1887

Abstract

To study the link between energy metabolism and secondary metabolism/morphological development in Streptomyces, knockout mutants were generated with regard to the subunits of the cytochrome oxidase supercomplex (CcO) in Streptomyces coelicolor A3(2). All mutants exhibited an identical phenotype: viable but defective in antibiotic production and cell differentiation when grown in both complex and minimal media. The growth yield of the CcO mutant was about half of that of the WT strain on glucose medium while both strains grew similarly on maltose medium. Intracellular ATP measurement demonstrated that the CcO mutant exhibited high intracellular ATP level. A similar elevation of intracellular ATP level was observed with regard to the WT strain cultured in the presence of BCDA, a copper-chelating agent. Reverse transcriptase PCR analysis demonstrated that the transcription of ATP synthase operon is upregulated in the CcO mutant. Addition of carbonylcyanide m-chlorophenylhydrazone, an inhibitor of ATP synthesis, promoted antibiotic production and aerial mycelia formation in the CcO mutant and BCDA-treated WT cells. We hypothesize that the deficiency of CcO causes accumulation of intracellular ATP, and that the high ATP level inhibits the onset of development in S. coelicolor.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000332
2016-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1446.html?itemId=/content/journal/micro/10.1099/mic.0.000332&mimeType=html&fmt=ahah

References

  1. Blundell K. L. , Wilson M. T. , Svistunenko D. A. , Vijgenboom E. , Worrall J. A. . ( 2013;). Morphological development and cytochrome c oxidase activity in Streptomyces lividans are dependent on the action of a copper bound Sco protein. . Open Biol 3: 120163. [CrossRef] [PubMed]
    [Google Scholar]
  2. Blundell K. L. , Hough M. A. , Vijgenboom E. , Worrall J. A. . ( 2014;). Structural and mechanistic insights into an extracytoplasmic copper trafficking pathway in Streptomyces lividans . . Biochem J 459: 525–538. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bott M. , Niebisch A. . ( 2003;). The respiratory chain of Corynebacterium glutamicum . . J Biotechnol 104: 129–153. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brekasis D. , Paget M. S. . ( 2003;). A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). . EMBO J 22: 4856–4865. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chandra G. , Chater K. F. . ( 2013;). Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. . FEMS Microbiol Rev 38: 345–379. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chaplin A. K. , Petrus M. L. , Mangiameli G. , Hough M. A. , Svistunenko D. A. , Nicholls P. , Claessen D. , Vijgenboom E. , Worrall J. A. . ( 2015;). GlxA is a new structural member of the radical copper oxidase family and is required for glycan deposition at hyphal tips and morphogenesis of Streptomyces lividans . . Biochem J 469: 433–444. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chater K. F. , Biró S. , Lee K. J. , Palmer T. , Schrempf H. . ( 2010;). The complex extracellular biology of Streptomyces . . FEMS Microbiol Rev 34: 171–198. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chi W. J. , Chang Y. K. , Hong S. K. . ( 2012;). Agar degradation by microorganisms and agar-degrading enzymes. . Appl Microbiol Biotechnol 94: 917–930. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fedoryshyn M. , Welle E. , Bechthold A. , Luzhetskyy A. . ( 2008;). Functional expression of the Cre recombinase in actinomycetes. . Appl Microbiol Biotechnol 78: 1065–1070. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fischer M. , Alderson J. , van Keulen G. , White J. , Sawers R. G. . ( 2010;). The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. . Microbiology 156: 3166–3179. [CrossRef] [PubMed]
    [Google Scholar]
  11. Frangipani E. , Haas D. . ( 2009;). Copper acquisition by the SenC protein regulates aerobic respiration in Pseudomonas aeruginosa PAO1. . FEMS Microbiol Lett 298: 234–240. [CrossRef] [PubMed]
    [Google Scholar]
  12. Fujimoto M. , Yamada A. , Kurosawa J. , Kawata A. , Beppu T. , Takano H. , Ueda K. . ( 2012;). Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces . . Microb Biotechnol 5: 477–488. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gust B. , Challis G. L. , Fowler K. , Kieser T. , Chater K. F. . ( 2003;). PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. . Proc Natl Acad Sci U S A 100: 1541–1546. [CrossRef] [PubMed]
    [Google Scholar]
  14. Keijser B. J. , van Wezel G. P. , Canters G. W. , Kieser T. , Vijgenboom E. . ( 2000;). The ram-dependence of Streptomyces lividans differentiation is bypassed by copper. . J Mol Microbiol Biotechnol 2: 565–574.[PubMed]
    [Google Scholar]
  15. Kieser T. , Hopwood D. A. . ( 1991;). Genetic manipulation of Streptomyces: integrating vectors and gene replacement. . Methods Enzymol 204: 430–458.[PubMed] [CrossRef]
    [Google Scholar]
  16. Kieser T. , Bibb M. J. , Buttner M. J. , Chater K. F. , Hopwood D. A. . ( 2000;). Practical Streptomyces Genetics. Norwich:: John Innes Foundation;.
    [Google Scholar]
  17. Li M. , Kim T. J. , Kwon H. J. , Suh J. W. . ( 2008;). Effects of extracellular ATP on the physiology of Streptomyces coelicolor A3(2). . FEMS Microbiol Lett 286: 24–31. [CrossRef] [PubMed]
    [Google Scholar]
  18. Li M. , Lee S. K. , Yang S. H. , Ko J. H. , Han J. S. , Kim T. J. , Suh J. W. . ( 2011;). ATP modulates the growth of specific microbial strains. . Curr Microbiol 62: 84–89. [CrossRef] [PubMed]
    [Google Scholar]
  19. Liu G. , Chater K. F. , Chandra G. , Niu G. , Tan H. . ( 2013;). Molecular regulation of antibiotic biosynthesis in Streptomyces . . Microbiol Mol Biol Rev 77: 112–143. [CrossRef] [PubMed]
    [Google Scholar]
  20. Madden T. , Ward J. M. , Ison A. P. . ( 1996;). Organic acid excretion by Streptomyces lividans TK24 during growth on defined carbon and nitrogen sources. . Microbiology 142: 3181–3185. [CrossRef] [PubMed]
    [Google Scholar]
  21. Matsushita K. , Shinagawa E. , Adachi O. , Ameyama M. . ( 1982;). o-Type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa . . FEBS Lett 139: 255–258. [CrossRef] [PubMed]
    [Google Scholar]
  22. Meng L. , Li M. , Yang S. H. , Kim T. J. , Suh J. W. . ( 2011;). Intracellular ATP levels affect secondary metabolite production in Streptomyces spp. . Biosci Biotechnol Biochem 75: 1576–1581. [CrossRef] [PubMed]
    [Google Scholar]
  23. Miyadoh S. . ( 1993;). Research on antibiotic screening in Japan over the last decade: a producing microorganism approach. . Actinomycetologica 7: 100–106. [CrossRef]
    [Google Scholar]
  24. Niebisch A. , Bott M. . ( 2003;). Purification of a cytochrome bc-aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa3 oxidase and mutational analysis of diheme cytochrome c1. . J Biol Chem 278: 4339–4346. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ryding N. J. , Kelemen G. H. , Whatling C. A. , Flärdh K. , Buttner M. J. , Chater K. F. . ( 1998;). A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). . Mol Microbiol 29: 343–357. [CrossRef] [PubMed]
    [Google Scholar]
  26. Sambrook J. , Russell D. W. . ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  27. Svensson B. , Lübben M. , Hederstedt L. . ( 1993;). Bacillus subtilis CtaA and CtaB function in haem A biosynthesis. . Mol Microbiol 10: 193–201. [CrossRef] [PubMed]
    [Google Scholar]
  28. Svensson B. , Hederstedt L. . ( 1994;). Bacillus subtilis CtaA is a heme-containing membrane protein involved in heme A biosynthesis. . J Bacteriol 176: 6663–6671.[PubMed]
    [Google Scholar]
  29. Ueda K. , Tomaru Y. , Endoh K. , Beppu T. . ( 1997;). Stimulatory effect of copper on antibiotic production and morphological differentiation in Streptomyces tanashiensis . . J Antibiot 50: 693–695. [CrossRef] [PubMed]
    [Google Scholar]
  30. van Keulen G. , Jonkers H. M. , Claessen D. , Dijkhuizen L. , Wösten H. A. . ( 2003;). Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor . . J Bacteriol 185: 1455–1458. [CrossRef] [PubMed]
    [Google Scholar]
  31. van Keulen G. , Alderson J. , White J. , Sawers R. G. . ( 2007;). The obligate aerobic actinomycete Streptomyces coelicolor A3(2) survives extended periods of anaerobic stress. . Environ Microbiol 9: 3143–3149. [CrossRef] [PubMed]
    [Google Scholar]
  32. Watsuji T. , Takano H. , Yamabe T. , Tamazawa S. , Ikemura H. , Ohishi T. , Matsuda T. , Shiratori-Takano H. , Beppu T. , Ueda K. . ( 2014;). Analysis of the tryptophanase expression in Symbiobacterium thermophilum in a coculture with Geobacillus stearothermophilus . . Appl Microbiol Biotechnol 98: 10177–11086. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000332
Loading
/content/journal/micro/10.1099/mic.0.000332
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error