1887

Abstract

After Candida albicans, the yeast Candida glabrata ranks second as an aetiological agent of candidaemia and is the most frequently encountered non-Candida albicans species in patients with invasive candidiasis. Transcriptome analysis in C. albicans, C. glabrata and Cryptoccocus neoformans has revealed that, when engulfed by macrophages, these yeasts upregulate genes involved in nutrient acquisition, including nitrogen transporters such as the general amino acid permease Gap1, the dicarboxylic amino acid permease Dip5, the basic amino acid permease Can1 and the ammonium permeases Mep1 and Mep2. Nitrogen assimilation has been well studied in model species of fungi, such as Aspergillus nidulans, Neurospora crassa and Saccharomyces cerevisiae. However, little is known about nitrogen assimilation in C. glabrata. In the present study, we report a major role for Gln3 in the assimilation of glutamine, ammonium and proline. Ure2 also has a role in nitrogen assimilation, but it is only observable in ammonium and glutamine. In addition, Gat1 has a minor role, which is only observable in the absence of Ure2 and Gln3. Gln3 is absolutely necessary for full ammonium uptake from media. We have also shown that MEP2 gene expression in C. glabrata is completely dependent on Gln3, whereas GAP1 regulation is mainly exerted by Gln3, with the exception of proline where Gat1 has a minor role. In addition, in C. glabrata Ure2 appears to be a negative regulator of these NCR-sensitive genes, similarly to what has been described in S. cerevisiae. Our data place Gln3 as a key regulator of nitrogen assimilation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000312
2016-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1490.html?itemId=/content/journal/micro/10.1099/mic.0.000312&mimeType=html&fmt=ahah

References

  1. Andersen G. , Merico A. , Björnberg O. , Andersen B. , Schnackerz K. D. , Dobritzsch D. , Piskur J. , Compagno C. . ( 2006;). Catabolism of pyrimidines in yeast: a tool to understand degradation of anticancer drugs. . Nucleosides Nucleotides Nucleic Acids 25: 991–996. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arendrup M. C. , Fuursted K. , Gahrn-Hansen B. , Schønheyder H. C. , Knudsen J. D. , Jensen I. M. , Bruun B. , Christensen J. J. , Johansen H. K. . ( 2008;). Semi-national surveillance of fungaemia in Denmark 2004–2006: increasing incidence of fungaemia and numbers of isolates with reduced azole susceptibility. . Clin Microbiol Infect 14: 487–494. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arst H. N. , Cove D. J. . ( 1973;). Nitrogen metabolite repression in Aspergillus nidulans . . Mol Gen Genet 126: 111–141. [CrossRef] [PubMed]
    [Google Scholar]
  4. Biswas K. , Morschhäuser J. . ( 2005;). The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans . . Mol Microbiol 56: 649–669. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brunke S. , Seider K. , Richter M. E. , Bremer-Streck S. , Ramachandra S. , Kiehntopf M. , Brock M. , Hube B. . ( 2014;). Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata . . Eukaryot Cell 13: 758–765. [CrossRef] [PubMed]
    [Google Scholar]
  6. Byrne K. P. , Wolfe K. H. . ( 2005;). The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. . Genome Res 15: 1456–1461. [CrossRef] [PubMed]
    [Google Scholar]
  7. Carvalho J. , Zheng X. F. . ( 2003;). Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein. . J Biol Chem 278: 16878–16886. [CrossRef] [PubMed]
    [Google Scholar]
  8. Castano I. , Kaur R. , Pan S. , Cregg R. , Penas A. L. , Guo N. , Biery M. C. , Craig N. L. , Cormack B. P. . ( 2003;). Tn7-based genome-wide random insertional mutagenesis of Candida glabrata . . Genome Res 13: 905–915. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cherry J. M. , Hong E. L. , Amundsen C. , Balakrishnan R. , Binkley G. , Chan E. T. , Christie K. R. , Costanzo M. C. , Dwight S. S. et al. ( 2012;). Saccharomyces Genome Database: the genomics resource of budding yeast. . Nucleic Acids Res 40: D700–705. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cooper T. G. . ( 2002;). Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. . FEMS Microbiol Rev 26: 223–238. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cormack B. P. , Falkow S. . ( 1999;). Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata . . Genetics 151: 979–987.[PubMed]
    [Google Scholar]
  12. Dabas N. , Morschhäuser J. . ( 2007;). Control of ammonium permease expression and filamentous growth by the GATA transcription factors GLN3 and GAT1 in Candida albicans . . Eukaryot Cell 6: 875–888. [CrossRef] [PubMed]
    [Google Scholar]
  13. Edskes H. K. , Wickner R. B. . ( 2002;). Conservation of a portion of the S . cerevisiae Ure2p prion domain that interacts with the full-length protein. . Proc Natl Acad Sci U S A 99: Suppl 4 16384–16391. [CrossRef] [PubMed]
    [Google Scholar]
  14. Edskes H. K. , Engel A. , McCann L. M. , Brachmann A. , Tsai H. F. , Wickner R. B. . ( 2011;). Prion-forming ability of Ure2 of yeasts is not evolutionarily conserved. . Genetics 188: 81–90. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ene I. V. , Brunke S. , Brown A. J. , Hube B. . ( 2014;). Metabolism in fungal pathogenesis. . Cold Spring Harb Perspect Med 4: a019695. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fan W. , Kraus P. R. , Boily M. J. , Heitman J. . ( 2005;). Cryptococcus neoformans gene expression during murine macrophage infection. . Eukaryot Cell 4: 1420–1433. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gojković Z. , Paracchini S. , Piškur J. . ( 1998;). A new model organism for studying the catabolism of pyrimidines and purines. . In Purine and Pyrimidine Metabolism in Man IX, Advances in Experimental Medicine and Biology , pp. 475–479. Edited by Griesmacher A. , Müller M. , Chiba P. . Boston, MA:: Advances in experimental medicine and biology;.[CrossRef]
    [Google Scholar]
  18. Gutiérrez-Escobedo G. , Orta-Zavalza E. , Castaño I. , De Las Peñas A. , De A. . ( 2013;). Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata. . Curr Genet 59: 91–106. [CrossRef] [PubMed]
    [Google Scholar]
  19. Horn D. L. , Neofytos D. , Anaissie E. J. , Fishman J. A. , Steinbach W. J. , Olyaei A. J. , Marr K. A. , Pfaller M. A. , Chang C. H. , Webster K. M. . ( 2009;). Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. . Clin Infect Dis 48: 1695–1703. [CrossRef]
    [Google Scholar]
  20. Inglis D. O. , Arnaud M. B. , Binkley J. , Shah P. , Skrzypek M. S. , Wymore F. , Binkley G. , Miyasato S. R. , Simison M. , Sherlock G. . ( 2012;). The Candida genome database incorporates multiple Candida species: multispecies search and analysis tools with curated gene and protein information for Candida albicans and Candida glabrata . . Nucleic Acids Res 40: D667–674. [CrossRef] [PubMed]
    [Google Scholar]
  21. Jauniaux J. C. , Grenson M. . ( 1990;). GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. . Eur J Biochem 190: 39–44. [CrossRef] [PubMed]
    [Google Scholar]
  22. Juárez-Reyes A. , Ramírez-Zavaleta C. Y. , Medina-Sánchez L. , De Las Peñas A. , Castaño I. . ( 2012;). A protosilencer of subtelomeric gene expression in Candida glabrata with unique properties. . Genetics 190: 101–111. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kaur R. , Ma B. , Cormack B. P. . ( 2007;). A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. . Proc Natl Acad Sci U S A 104: 7628–7633. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kmetzsch L. , Staats C. C. , Simon E. , Fonseca F. L. , Oliveira D. L. , Joffe L. S. , Rodrigues J. , Lourenço R. F. , Gomes S. L. et al. ( 2011;). The GATA-type transcriptional activator Gat1 regulates nitrogen uptake and metabolism in the human pathogen Cryptococcus neoformans . . Fungal Genet Biol 48: 192–199. [CrossRef] [PubMed]
    [Google Scholar]
  25. Köhler J. R. , Casadevall A. , Perfect J. . ( 2015;). The spectrum of fungi that infects humans. . Cold Spring Harb Perspect Med 5: a019273. [CrossRef]
    [Google Scholar]
  26. Kraidlova L. , Van Zeebroeck G. , Van Dijck P. , Sychrová H. . ( 2011;). The Candida albicans GAP gene family encodes permeases involved in general and specific amino acid uptake and sensing. . Eukaryot Cell 10: 1219–1229. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kulkarni A. A. , Abul-Hamd A. T. , Rai R. , El Berry H. , Cooper T. G. . ( 2001;). Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. . J Biol Chem 276: 32136–32144. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lee I. R. , Chow E. W. , Morrow C. A. , Djordjevic J. T. , Fraser J. A. . ( 2011;). Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans . . Genetics 188: 309–323. [CrossRef] [PubMed]
    [Google Scholar]
  29. Liao W. L. , Ramón A. M. , Fonzi W. A. . ( 2008;). GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans . . Fungal Genet Biol 45: 514–526. [CrossRef] [PubMed]
    [Google Scholar]
  30. Limjindaporn T. , Khalaf R. A. , Fonzi W. A. . ( 2003;). Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1 . . Mol Microbiol 50: 993–1004. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lorenz M. C. , Bender J. A. , Fink G. R. . ( 2004;). Transcriptional response of Candida albicans upon internalization by macrophages. . Eukaryot Cell 3: 1076–1087. [CrossRef] [PubMed]
    [Google Scholar]
  32. Magasanik B. , Kaiser C. A. . ( 2002;). Nitrogen regulation in Saccharomyces cerevisiae . . Gene 290: 1–18. [CrossRef] [PubMed]
    [Google Scholar]
  33. Marini A. M. , Soussi-Boudekou S. , Vissers S. , Andre B. . ( 1997;). A family of ammonium transporters in Saccharomyces cerevisiae . . Mol Cell Biol 17: 4282–4293. [CrossRef] [PubMed]
    [Google Scholar]
  34. Marzluf G. A. . ( 1997;). Genetic regulation of nitrogen metabolism in the fungi. . Microbiol Mol Biol Rev 61: 17–32.[PubMed]
    [Google Scholar]
  35. Messenguy F. , André B. , Dubois E. . ( 2006;). Diversity of nitrogen metabolism among yeast species: regulatory and evolutionary aspects. . In Biodiversity and Ecophysiology of Yeasts, the Yeast Handbook , pp. 123–153. Edited by Péter G. , Rosa C. . Berlin/Heidelberg:: Springer-Verlag;.[CrossRef]
    [Google Scholar]
  36. Mitchell A. P. . ( 1985;). The GLN1 locus of Saccharomyces cerevisiae encodes glutamine synthetase. . Genetics 111: 243–258.[PubMed]
    [Google Scholar]
  37. Pfaller M. A. , Andes D. R. , Diekema D. J. , Horn D. L. , Reboli A. C. , Rotstein C. , Franks B. , Azie N. E. . ( 2014;). Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004–2008. . PLoS One 9: e101510. [CrossRef] [PubMed]
    [Google Scholar]
  38. Regenberg B. , Düring-Olsen L. , Kielland-Brandt M. C. , Holmberg S. . ( 1999;). Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae . . Curr Genet 36: 317–328. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rice P. , Longden I. , Bleasby A. . ( 2000;). EMBOSS: the European molecular biology open software suite. . Trends Genet 16: 276–277. [CrossRef] [PubMed]
    [Google Scholar]
  40. Schmitt M. E. , Brown T. A. , Trumpower B. L. . ( 1990;). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae . . Nucleic Acids Res 18: 3091–3092. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sherman F. , Fink G. R. , Hicks J. B. . ( 1986;). Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  42. Soussi-Boudekou S. , André B. . ( 1999;). A co-activator of nitrogen-regulated transcription in Saccharomyces cerevisiae . . Mol Microbiol 31: 753–762. [CrossRef] [PubMed]
    [Google Scholar]
  43. Stanbrough M. , Rowen D. W. , Magasanik B. . ( 1995;). Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. . Proc Natl Acad Sci U S A 92: 9450–9454. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wong K. H. , Hynes M. J. , Davis M. A. . ( 2008;). Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. . Eukaryot Cell 7: 917–925. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wrobel L. , Whittington J. K. , Pujol C. , Oh S. H. , Ruiz M. O. , Pfaller M. A. , Diekema D. J. , Soll D. R. , Hoyer L. L. . ( 2008;). Molecular phylogenetic analysis of a geographically and temporally matched set of Candida albicans isolates from humans and nonmigratory wildlife in central Illinois. . Eukaryot Cell 7: 1475–1486. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000312
Loading
/content/journal/micro/10.1099/mic.0.000312
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error