1887

Abstract

is an opportunistic pathogen that ranks among the leading causes of biofilm-associated infections. We previously demonstrated that the endocarditis- and biofilm-associated pili (Ebp) of play a major role in biofilm formation, adherence to abiotic surfaces and experimental infections. In this study, derivatives of strain OG1 were engineered to further characterize functions of Ebp pili. Loss of pili resulted in a 36-fold decrease in the number of closely associated cells when OG1RFΔ was mixed with OG1SSpΔ, compared with mixing the Ebp parental strains. In addition, using the Ebp parental strains as donor and recipient, we found a statistically significant increase (280–360 %,  < 0.05) in the frequency of plasmid transfer versus using Ebp mutants in the conjugation experiments. These results demonstrate a previously unrecognized role of Ebp pili, namely, as important contributors to microscale cell aggregation and horizontal spread of genetic material.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000276
2016-05-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/5/798.html?itemId=/content/journal/micro/10.1099/mic.0.000276&mimeType=html&fmt=ahah

References

  1. Bourgogne A., Hilsenbeck S. G., Dunny G. M., Murray B. E.. ( 2006;). Comparison of OG1RF and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of Enterococcus faecalis is more than the activator of gelatinase and serine protease. J Bacteriol 188: 2875–2884 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bourgogne A., Singh K. V., Fox K. A., Pflughoeft K. J., Murray B. E., Garsin D. A.. ( 2007;). EbpR is important for biofilm formation by activating expression of the endocarditis and biofilm-associated pilus operon (ebpABC) of Enterococcus faecalis OG1RF. J Bacteriol 189: 6490–6493 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bourgogne A., Garsin D. A., Qin X., Singh K. V., Sillanpaa J., Yerrapragada S., Ding Y., Dugan-Rocha S., Buhay C., other authors. ( 2008;). Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9: R110 [CrossRef] [PubMed].
    [Google Scholar]
  4. Clewell D. B., Yagi Y., Dunny G. M., Schultz S. K.. ( 1974;). Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J Bacteriol 117: 283–289 [PubMed].
    [Google Scholar]
  5. DebRoy S., van der Hoeven R., Singh K. V., Gao P., Harvey B. R., Murray B. E., Garsin D. A.. ( 2012;). Development of a genomic site for gene integration and expression in Enterococcus faecalis. J Microbiol Methods 90: 1–8 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dunny G. M., Brown B. L., Clewell D. B.. ( 1978;). Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci U S A 75: 3479–3483 [CrossRef] [PubMed].
    [Google Scholar]
  7. Flores-Mireles A. L., Pinkner J. S., Caparon M. G., Hultgren S. J.. ( 2014;). EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci Transl Med 6: 254ra127 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gao P., Pinkston K. L., Nallapareddy S. R., van Hoof A., Murray B. E., Harvey B. R.. ( 2010;). Enterococcus faecalis rnjB is required for pilin gene expression and biofilm formation. J Bacteriol 192: 5489–5498 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kemp K. D., Singh K. V., Nallapareddy S. R., Murray B. E.. ( 2007;). Relative contributions of Enterococcus faecalis OG1RF sortase-encoding genes, srtA and bps (srtC), to biofilm formation and a murine model of urinary tract infection. Infect Immun 75: 5399–5404 [CrossRef] [PubMed].
    [Google Scholar]
  10. Montealegre M. C., La Rosa S. L., Roh J. H., Harvey B. R., Murray B. E.. ( 2015;). The Enterococcus faecalis ebpA pilus protein: attenuation of expression, biofilm formation, and adherence to fibrinogen start with the rare initiation codon att. MBio 6: e00467–e00415 [CrossRef] [PubMed].
    [Google Scholar]
  11. Murray B. E., Singh K. V., Ross R. P., Heath J. D., Dunny G. M., Weinstock G. M.. ( 1993;). Generation of restriction map of Enterococcus faecalis OG1 and investigation of growth requirements and regions encoding biosynthetic function. J Bacteriol 175: 5216–5223 [PubMed].
    [Google Scholar]
  12. Nallapareddy S. R., Singh K. V., Sillanpää J., Garsin D. A., Höök M., Erlandsen S. L., Murray B. E.. ( 2006;). Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Invest 116: 2799–2807 [CrossRef] [PubMed].
    [Google Scholar]
  13. Nallapareddy S. R., Sillanpää J., Mitchell J., Singh K. V., Chowdhury S. A., Weinstock G. M., Sullam P. M., Murray B. E.. ( 2011a;). Conservation of Ebp-type pilus genes among Enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. Infect Immun 79: 2911–2920 [CrossRef] [PubMed].
    [Google Scholar]
  14. Nallapareddy S. R., Singh K. V., Sillanpää J., Zhao M., Murray B. E.. ( 2011b;). Relative contributions of Ebp Pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun 79: 2901–2910 [CrossRef] [PubMed].
    [Google Scholar]
  15. Nielsen H. V., Guiton P. S., Kline K. A., Port G. C., Pinkner J. S., Neiers F., Normark S., Henriques-Normark B., Caparon M. G., Hultgren S. J.. ( 2012;). The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. MBio 3: e00177–e00112 [CrossRef] [PubMed].
    [Google Scholar]
  16. Parsek M. R., Singh P. K.. ( 2003;). Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57: 677–701 [CrossRef] [PubMed].
    [Google Scholar]
  17. Pinkston K. L., Singh K. V., Gao P., Wilganowski N., Robinson H., Ghosh S., Azhdarinia A., Sevick-Muraca E. M., Murray B. E., Harvey B. R.. ( 2014;). Targeting pili in enterococcal pathogenesis. Infect Immun 82: 1540–1547 [CrossRef] [PubMed].
    [Google Scholar]
  18. Sillanpää J., Xu Y., Nallapareddy S. R., Murray B. E., Höök M.. ( 2004;). A family of putative MSCRAMMs from Enterococcus faecalis. Microbiology 150: 2069–2078 [CrossRef] [PubMed].
    [Google Scholar]
  19. Sillanpää J., Chang C., Singh K. V., Montealegre M. C., Nallapareddy S. R., Harvey B. R., Ton-That H., Murray B. E.. ( 2013;). Contribution of individual Ebp Pilus subunits of Enterococcus faecalis OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. PLoS One 8: e68813 [CrossRef] [PubMed].
    [Google Scholar]
  20. Singh K. V., Nallapareddy S. R., Murray B. E.. ( 2007;). Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J Infect Dis 195: 1671–1677 [CrossRef] [PubMed].
    [Google Scholar]
  21. Turroni F., Serafini F., Foroni E., Duranti S., O'Connell Motherway M., Taverniti V., Mangifesta M., Milani C., Viappiani A., other authors. ( 2013;). Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci U S A 110: 11151–11156 [CrossRef] [PubMed].
    [Google Scholar]
  22. Yeung M. K.. ( 2000;). Actinomyces: surface macromolecules and bacteria-host interactions. . In Gram-Positive Pathogens, pp. 583–593. Edited by Fischetti V. A., Novick R. P., Ferretti J. J., Portnoy D. A., Rood J. I.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000276
Loading
/content/journal/micro/10.1099/mic.0.000276
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error