1887

Abstract

The -operon of the psychrophilic bioluminescent bacterium is regulated by quorum sensing (QS). The key components of this system are LuxI, which catalyses synthesis of the autoinducer (AI), and LuxR, which activates transcription of the entire -operon. The -operon of contains two copies of the gene: and . In the present study, -operon sequence analysis from 16 strains of , isolated from cold habitats of the White, Baltic, Okhotsk and Bering seas, was carried out. Phylogenetic analysis showed that all isolated strains of have both copies of genes which are homologous to genes of the related . Evaluation of LuxR1 and LuxR2 activity showed that LuxR2 remains active at significantly lower concentrations of AI (10 M) than LuxR1, which is active only at high AI concentrations (10 M). As the QS response is already prominent at AI concentrations as low as 10 to 10 M, we conclude that LuxR2 is the main activator of the -operon . The thermolabilities of LuxR1 and LuxR2 are similar and exceed that of LuxR of the mesophilic bacterium . In contrast to LuxR2, LuxR1 is not a substrate of Lon protease and does not require the chaperonin GroEL/ES for its folding. This study expands our current understanding of QS regulation in as it implies differential regulation by LuxR1 and LuxR2 proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000253
2016-04-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/4/717.html?itemId=/content/journal/micro/10.1099/mic.0.000253&mimeType=html&fmt=ahah

References

  1. Ast J. C., Urbanczyk H., Dunlap P. V.. 2009; Multi-gene analysis reveals previously unrecognized phylogenetic diversity in Aliivibrio. Syst Appl Microbiol32:379–386 [CrossRef][PubMed]
    [Google Scholar]
  2. Bang S. S., Baumann P., Nealson K. H.. 1978; Phenotypic characterization of Photobacterium logei (sp. nov.), a species related to P. fischeri. Microbiology1:285–288
    [Google Scholar]
  3. Beaz-Hidalgo R., Doce A., Balboa S., Barja J. L., Romalde J. L.. 2010; Aliivibrio finisterrensis sp. nov., isolated from Manila clam, Ruditapes philippinarum and emended description of the genus Aliivibrio. Int J Syst Evol Microbiol60:223–228 [CrossRef][PubMed]
    [Google Scholar]
  4. Bowman J. B.. 2008; Genomic analysis of psichrophilic prokaryotes. In Psychrophiles: from Biodiversity to Biotechnology pp265–284 Edited by Margesin R., Schinner F., Marx J. C., Gerday C.. Berlin: Springer; [CrossRef]
    [Google Scholar]
  5. Dolan K. M., Greenberg E. P.. 1992; Evidence that GroEL, not σ32, is involved in transcriptional regulation of the Vibrio fischeri luminescence genes in Escherichia coli. J Bacteriol174:5132–5135[PubMed]
    [Google Scholar]
  6. Fidopiastis P. M., von Boletzky S., Ruby E. G.. 1998; A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J Bacteriol180:59–64[PubMed]
    [Google Scholar]
  7. Khrul'nova S. A., Manukhov I. V., Zavil'gel'skiĭ G. B.. 2011; “Quorum sensing” regulation of lux gene expression and the structure of lux operon in marine bacteria Aliivibrio logei. Genetika47:1596–1603 [Erratum in: (2012). Genetika 48, 288]
    [Google Scholar]
  8. Khrul'nova S. A., Maryshev I. V., Kulikovsky A. D., Manukhov I. V., Zavilgelsky G. B.. 2012; Comparative analysis of the “Quorum Sensing” systems in psychrophilic Aliivibrio logei and mesophilic A. fischeri luminous marine bacteria. Biol Membr29:362–366 (in Russian)
    [Google Scholar]
  9. Manukhov I. V., Kotova V.Iu, Zavil'gel'skiĭ G. B.. 2006; [Host factors in the regulation of the Vibrio fischeri lux operon in Escherichia coli cells]. Mikrobiologiia75:525–531 (in Russian)
    [Google Scholar]
  10. Manukhov I. V., Melkina O. E., Goryanin I. I., Baranova A. V., Zavilgelsky G. B.. 2010; The N-terminal domain of Aliivibrio fischeri LuxR is a target of the GroEL chaperonin. J Bacteriol192:5549–5551 [CrossRef][PubMed]
    [Google Scholar]
  11. Manukhov I. V., Khrul'nova S. A., Baranova A., Zavilgelsky G. B.. 2011; Comparative analysis of the lux operons in Aliivibrio logei KCh1 (a Kamchatka isolate) and Aliivibrio salmonicida. J Bacteriol193:3998–4001 [CrossRef][PubMed]
    [Google Scholar]
  12. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A74:5463–5467 [CrossRef][PubMed]
    [Google Scholar]
  13. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  14. Urbanczyk H., Ast J. C., Higgins M. J., Carson J., Dunlap P. V.. 2007; Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol57:2823–2829 [CrossRef][PubMed]
    [Google Scholar]
  15. Van Dyk T. K., Rosson R. A.. 1998; Photorhabdus luminescens luxCDABE promoter probe vectors. Methods Mol Biol102:85–95[PubMed]
    [Google Scholar]
  16. Zavil'gel'skiĭ G. B., Manukhov I. V.. 1997; [The role of La-protease in a negative control of expression of luxICDABE genes of Vibrio fischeri in Escherichia coli cells]. Mol Biol (Mosk)31:945–949 (in Russian)[PubMed]
    [Google Scholar]
  17. Zeilstra-Ryalls J., Fayet O., Baird L., Georgopoulos C.. 1993; Sequence analysis and phenotypic characterization of groEL mutations that block and T4 bacteriophage growth. J Bacteriol175:1134–1143[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000253
Loading
/content/journal/micro/10.1099/mic.0.000253
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error