-
Volume 162,
Issue 4,
2016
Volume 162, Issue 4, 2016
- Biotechnology
-
-
-
Inner membrane proteins YgdD and SbmA are required for the complete susceptibility of Escherichia coli to the proline-rich antimicrobial peptide arasin 1(1–25)
Arasin 1 from the spider crab Hyas araneus is a proline-rich antimicrobial peptide (PR-AMP), which kills target bacteria by a non-membranolytic mechanism. By using a fluorescent derivative of the peptide, we showed that arasin 1 rapidly penetrates into Escherichia coli cells without membrane damage. To unravel its mode of action, a knockout gene library of E. coli was screened and two types of mutants with a less susceptible phenotype to the arasin 1 fragment (1–23) were found. The first bore the mutation of sbmA, a gene coding for an inner membrane protein involved in the uptake of different antibiotic peptides. The second mutation was located in the ygdD gene, coding for a conserved inner membrane protein of unknown function. Functional studies showed that YgdD is required for the full susceptibility to arasin 1(1–25), possibly by supporting its uptake and/or intracellular action. These results indicated that different bacterial proteins are exploited by arasin 1(1–25) to exert its antibacterial activity and add new insights on the complex mode of action of PR-AMPs.
-
-
- Environmental Biology
-
-
-
The O-antigen mediates differential survival of Salmonella against communities of natural predators
More LessAntigenically distinct members of bacterial species can be differentially distributed in the environment. Predators known to consume antigenically distinct prey with different efficiencies are also differentially distributed. Here we show that antigenically distinct, but otherwise isogenic and physiologically indistinct, strains of Salmonella enterica show differential survival in natural soil, sediment and intestinal environments, where they would face a community of predators. Decline in overall cell numbers is attenuated by factors that inhibit the action of predators, including heat and antiprotozoal and antihelminthic drugs. Moreover, the fitness of strains facing these predators – calculated by comparing survival with and without treatments attenuating predator activity – varies between environments. These results suggest that relative survival in natural environments is arbitrated by communities of natural predators whose feeding preferences, if not species composition, vary between environments. These data support the hypothesis that survival against natural predators may drive the differential distribution of bacteria among microenvironments.
-
-
- Genomics and Systems Biology
-
-
-
Plasmid-like replication of a minimal streptococcal integrative and conjugative element
Integrative and conjugative elements (ICEs) are mobile genetic elements encoding their own excision from a replicon of their bacterial host, transfer by conjugation to a recipient bacterium and reintegration for maintenance. The conjugation, recombination and regulation modules of ICEs of the ICESt3 family are grouped together in a region called the ICE ‘core region’. In addition to this core region, elements belonging to this family carry a highly variable region including cargo genes that could be involved in bacterial adaptation or in the maintenance of the element. Although ICEs are a major class of mobile elements through bacterial genomes, the functionality of an element encoding only its excision, transfer, integration and regulation has never been demonstrated experimentally. We engineered MiniICESt3, an artificial ICE derived from ICESt3, devoid of its cargo genes and thus only harbouring the core region. The functionality of this minimal element was assessed. MiniICESt3 was found to be able to excise at a rate of 3.1 %, transfer with a frequency of 1.0 × 10− 5 transconjugants per donor cell and stably maintain by site-specific integration into the 3′ end of the fda gene, the same as ICESt3. Furthermore, MiniICESt3 was found in ∼10 copies per chromosome, this multicopy state likely contributing to its stability for >100 generations even in the absence of selection. Therefore, although ICEs were primarily assumed to only replicate along with the chromosome, our results uncovered extrachromosomal rolling-circle replicating plasmid-like forms of MiniICESt3.
-
-
-
-
Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transposition biases and strategies for novel mutant discovery
Mycobacterium avium subsp. paratuberculosis (MAP), the aetiological agent of Johne's disease, is one of the most important bacterial pathogens in ruminants. A thorough understanding of MAP pathogenesis is needed to develop new vaccines and diagnostic tests. The generation of comprehensive random transposon mutant libraries is a fundamental genetic technology to determine the role of genes in physiology and pathogenesis. In this study, whole MAP genome analysis compared the insertion sites for the mycobacterial transposon Tn5367 derived from the Mycobacterium smegmatis insertion sequence IS1096 and the mariner transposon MycoMarT7 carrying the Himar1 transposase. We determined that only MycoMarT7 provides a random representation of insertions in 99 % of all MAP genes. Analysis of the MAP K-10 genome indicated that 710 of all ORFs do not possess IS1096 recognition sites, while only 37 do not have the recognition site for MycoMarT7. Thus, a significant number of MAP genes remain underrepresented in insertion libraries from IS1096-derived transposons. Analysis of MycoMarT7 and Tn5367 mutants showed that Tn5367 has a predilection to insert within intergenic regions, suggesting that MycoMarT7 is the more adequate for generating a comprehensive library. However, we uncovered the novel finding that both transposons have loci-dependent biases, with Tn5367 being the most skewed. These loci-dependent transposition biases led to an underestimation of the number of independent mutants required to generate a comprehensive mutant library, leading to an overestimation of essential genes. Herein, we also demonstrated a useful platform for gene discovery and analysis by isolating three novel mutants for each transposon.
-
- Host-microbe Interaction
-
-
-
Phylogenetic, virulence and antibiotic resistance characteristics of commensal strain populations of Escherichia coli from community subjects in the Paris area in 2010 and evolution over 30 years
It is important to study commensal populations of Escherichia coli because they appear to be the reservoir of both extra-intestinal pathogenic E. coli and antibiotic resistant strains of E. coli. We studied 279 dominant faecal strains of E. coli from 243 adults living in the community in the Paris area in 2010. The phylogenetic group and subgroup [sequence type complex (STc)] of the isolates and the presence of 20 virulence genes were determined by PCR assays. The O-types and resistance to 18 antibiotics were assessed phenotypically. The B2 group was the most frequently recovered (34.0 %), followed by the A group (28.7 %), and other groups were more rare. The most prevalent B2 subgroups were II (STc73), IV (STc141), IX (STc95) and I (STc131), with 22.1, 21.1, 16.8 and 13.7 %, respectively, of the B2 group strains. Virulence factors (VFs) were more common in B2 group than other strains. One or more resistances were found in 125 strains (44.8 % of the collection) but only six (2.2 % of the collection) were multiresistant; no extended-spectrum beta-lactamase-producing strain was isolated. The C phylogroup and clonal group A strains were the most resistant. No trade-off between virulence and resistance was evidenced. We compared these strains with collections of strains gathered under the same conditions 30 and 10 years ago. There has been a parallel and linked increase in the frequency of B2 group strains (from 9.4 % in 1980, to 22.7 % in 2000 and 34.0 % in 2010) and of VFs. Antibiotic resistance also increased, from 22.6 % of strains resistant to at least one antibiotic in 1980, to 31.8 % in 2000 and 44.8 % in 2010; resistance to streptomycin, however, remained stable. Commensal human E. coli populations have clearly evolved substantially over time, presumably reflecting changes in human practices, and particularly increasing antibiotic use.
-
-
- Physiology and Metabolism
-
-
-
Different strategies of osmoadaptation in the closely related marine myxobacteria Enhygromyxa salina SWB007 and Plesiocystis pacifica SIR-1
Only a few myxobacteria are known to date that are classified as marine, owing to their salt dependency. In this study, the salt tolerance mechanism of these bacteria was investigated. To this end, a growth medium was designed in which the mutated Escherichia coli strain BKA13 served as sole food source for the predatory, heterotrophic myxobacteria. This enabled measurement of the osmolytes without any background and revealed that the closely related strains Enhygromyxa salina SWB007 and Plesiocystis pacifica SIR-1 developed different strategies to handle salt stress. Ple. pacifica SIR-1, which was grown between 1 and 4 % NaCl, relies solely on the accumulation of amino acids, while Enh. salina SWB007, which was grown between 0.5 and 3 % NaCl, employs, besides betaine, hydroxyectoine as the major compatible solute. In accordance with this analysis, only in the latter strain was a locus identified that codes for genes corresponding to the biosynthesis of betaine, ectoine and hydroxyectoine.
-
-
-
-
PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans
More LessStreptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.
-
-
-
A gene encoding a potential adenosine 5′-phosphosulphate kinase is necessary for timely development of Myxococcus xanthus
More LessA Myxococcus xanthus gene, MXAN3487, was identified by transposon mutagenesis to be required for the expression of mcuABC, an operon coding for part of the chaperone–usher (CU) system in this bacterium. The MXAN3487 protein displays sequence and structural homology to adenosine 5′-phosphosulphate (APS) kinase family members and contains putative motifs for ATP and APS binding. Although the MXAN3487 locus is not linked to other sulphate assimilation genes, its protein product may have APS kinase activity in vivo and the importance of the ATP-binding site for activity was demonstrated. Expression of MXAN3487 was not affected by sulphate availability, suggesting that MXAN3487 may not function in a reductive sulphate assimilation pathway. Deletion of MXAN3487 significantly delayed fruiting body formation and the production of McuA, a spore coat protein secreted by the M. xanthus Mcu CU system. Based on these observations and data from our previous studies, we propose that MXAN3487 may phosphorylate molecules structurally related to APS, generating metabolites necessary for M. xanthus development, and that MXAN3487 exerts a positive effect on the mcuABC operon whose expression is morphogenesis dependent.
-
-
-
Copper resistance and its regulation in the sulfate-reducing bacterium Desulfosporosinus sp. OT
More LessDesulfosporosinus sp. OT is a Gram-positive, acidophilic sulfate-reducing firmicute isolated from copper tailings sediment in the Norilsk mining-smelting area in Siberia and represents the first Desulfosporosinus species whose genome has been sequenced. Desulfosporosinus sp. OT is exceptionally copper resistant, which made it of interest to study the resistance mechanism. It possesses a copUAZ operon which is shown here to be involved in copper resistance. The copU gene encodes a CsoR-type homotetrameric repressor. By electrophoretic mobility shift assay, it was shown that CopU binds to the operator/promoter region of the copUAZ operon in the absence of copper and is released from the DNA by Cu+ or Ag+, implying that CopU regulates the operon in a copper/silver-dependent manner. DOT_CopA is a P1B-type ATPase related to other characterized, bacterial copper ATPases. When expressed in a copper-sensitive Escherichia coli ΔcopA mutant, it restores copper resistance to WT levels. His-tagged DOT_CopA was expressed from a plasmid in E. coli and purified by Ni-NTA affinity chromatography. The purified enzyme was most active in the presence of Cu(I) and bacterial phospholipids. These findings indicate that the copUAZ operon confers copper resistance to Desulfosporosinus sp. OT, but do not per se explain the basis of the high copper resistance of this strain.
-
-
-
Evidence that COG0325 proteins are involved in PLP homeostasis
Pyridoxal 5′-phosphate (PLP) is an essential cofactor for nearly 60 Escherichia coli enzymes but is a highly reactive molecule that is toxic in its free form. How PLP levels are regulated and how PLP is delivered to target enzymes are still open questions. The COG0325 protein family belongs to the fold-type III class of PLP enzymes and binds PLP but has no known biochemical activity although it occurs in all kingdoms of life. Various pleiotropic phenotypes of the E. coli COG0325 (yggS) mutant have been reported, some of which were reproduced and extended in this study. Comparative genomic, genetic and metabolic analyses suggest that these phenotypes reflect an imbalance in PLP homeostasis. The E. coli yggS mutant accumulates the PLP precursor pyridoxine 5′-phosphate (PNP) and is sensitive to an excess of pyridoxine but not of pyridoxal. The pyridoxine toxicity phenotype is complemented by the expression of eukaryotic yggS orthologs. It is also suppressed by the presence of amino acids, specifically isoleucine, threonine and leucine, suggesting the PLP-dependent enzyme transaminase B (IlvE) is affected. These genetic results lay a foundation for future biochemical studies of the role of COG0325 proteins in PLP homeostasis.
-
- Regulation
-
-
-
OxyR is a key regulator in response to oxidative stress in Streptomyces avermitilis
More LessThe role of the H2O2-sensing transcriptional regulator OxyR in oxidative stress responses in Streptomyces avermitilis was investigated. An oxyR deletion mutant was more sensitive to H2O2 and tert-butyl hydroperoxide than was the WT strain, indicating that OxyR mediates the defensive system against H2O2 and organic peroxide. Evidence presented herein suggests that in cells treated with exogenous H2O2, the oxidized form of OxyR activated expression of ahpCD by binding to a palindromic sequence of the promoter region. Oxidized OxyR also induced expression of other antioxidant enzymes (KatA1, KatA2, KatA3 and OhrB1) and oxidative stress regulators (CatR, OhrR and σR). The thiol-oxidative stress regulator gene sigR was regulated at the transcription level by OxyR. We conclude that OxyR is necessary to activate transcription of sigR from the σR-dependent promoter to express an unstable larger isoform of σR during oxidative stress. In response to oxidative stress, OxyR facilitates rapid production of H2O2-scavenging enzymes to repair oxidative damage through direct regulation and cascaded regulation of CatR, OhrR and σR.
-
-
-
-
Lux-operon of the marine psychrophilic bacterium Aliivibrio logei: a comparative analysis of the LuxR1/LuxR2 regulatory activity in Escherichia coli cells
The lux-operon of the psychrophilic bioluminescent bacterium Aliivibrio logei is regulated by quorum sensing (QS). The key components of this system are LuxI, which catalyses synthesis of the autoinducer (AI), and LuxR, which activates transcription of the entire lux-operon. The lux-operon of A. logei contains two copies of the luxR gene: luxR1 and luxR2. In the present study, lux-operon sequence analysis from 16 strains of A. logei, isolated from cold habitats of the White, Baltic, Okhotsk and Bering seas, was carried out. Phylogenetic analysis showed that all isolated strains of A. logei have both copies of luxR genes which are homologous to luxR genes of the related Aliivibrio salmonicida. Evaluation of LuxR1 and LuxR2 activity showed that LuxR2 remains active at significantly lower concentrations of AI (10− 9 M) than LuxR1, which is active only at high AI concentrations (10− 6 M). As the QS response is already prominent at AI concentrations as low as 10− 8 to 10− 9 M, we conclude that LuxR2 is the main activator of the lux-operon of A. logei. The thermolabilities of LuxR1 and LuxR2 are similar and exceed that of LuxR of the mesophilic bacterium Aliivibrio fischeri. In contrast to LuxR2, LuxR1 is not a substrate of Lon protease and does not require the chaperonin GroEL/ES for its folding. This study expands our current understanding of QS regulation in A. logei as it implies differential regulation by LuxR1 and LuxR2 proteins.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
