1887

Abstract

Mercury is a heavy metal and toxic to all forms of life. Metal exposure can invoke a response to improve survival. In archaea, several components of a mercury response system have been identified, but it is not known whether metal transport is a member of this system. To identify such missing components, a peptide-tagged MerR transcription factor was used to localize enriched chromosome regions by chromosome immunoprecipitation combined with DNA sequence analysis. Such regions could serve as secondary regulatory binding sites to control the expression of additional genes associated with mercury detoxification. Among the 31 highly enriched loci, a subset of five was pursued as potential candidates based on their current annotations. Quantitative reverse transcription-PCR analysis of these regions with and without mercury treatment in WT and mutant strains lacking indicated significant regulatory responses under these conditions. Of these, a Family 5 extracellular solute-binding protein and the MarR transcription factor shown previously to control responses to oxidation were most strongly affected. Inactivation of the solute-binding protein by gene disruption increased the resistance of mutant cells to mercury challenge. Inductively coupled plasma-MS analysis of the mutant cell line following metal challenge indicated there was less intracellular mercury compared with the isogenic WT strain. Together, these regulated genes comprise new members of the archaeal MerR regulon and reveal a cascade of transcriptional control not previously demonstrated in this model organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000189
2015-12-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2423.html?itemId=/content/journal/micro/10.1099/mic.0.000189&mimeType=html&fmt=ahah

References

  1. Alekshun M. N. , Levy S. B. . ( 1999;). The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7: 410–413 [CrossRef] [PubMed].
    [Google Scholar]
  2. Allen M. B. . ( 1959;). Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol 32: 270–277 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ariza R. R. , Cohen S. P. , Bachhawat N. , Levy S. B. , Demple B. . ( 1994;). Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli . J Bacteriol 176: 143–148 [PubMed].
    [Google Scholar]
  4. Bailey T. L. , Elkan C. . ( 1994;). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28–36 [PubMed].
    [Google Scholar]
  5. Bailey T. L. , Gribskov M. . ( 1998;). Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14: 48–54 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bare J. C. , Koide T. , Reiss D. J. , Tenenbaum D. , Baliga N. S. . ( 2010;). Integration and visualization of systems biology data in context of the genome. BMC Bioinformatics 11: 382 [CrossRef] [PubMed].
    [Google Scholar]
  7. Barkay T. , Miller S. M. , Summers A. O. . ( 2003;). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27: 355–384 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bini E. , Dikshit V. , Dirksen K. , Drozda M. , Blum P. . ( 2002;). Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus . RNA 8: 1129–1136 [CrossRef] [PubMed].
    [Google Scholar]
  9. Brock T. D. , Brock K. M. , Belly R. T. , Weiss R. L. . ( 1972;). Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84: 54–68 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cohen S. P. , Hächler H. , Levy S. B. . ( 1993;). Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli . J Bacteriol 175: 1484–1492 [PubMed].
    [Google Scholar]
  11. Di Fiore A. , Fiorentino G. , Vitale R. M. , Ronca R. , Amodeo P. , Pedone C. , Bartolucci S. , De Simone G. . ( 2009;). Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in Archaea by MarR family proteins. J Mol Biol 388: 559–569 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dixit V. , Bini E. , Drozda M. , Blum P. . ( 2004;). Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus . Antimicrob Agents Chemother 48: 1993–1999 [CrossRef] [PubMed].
    [Google Scholar]
  13. Ellison D. W. , Miller V. L. . ( 2006;). Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 9: 153–159 [CrossRef] [PubMed].
    [Google Scholar]
  14. Ettema T. J. , Huynen M. A. , de Vos W. M. , van der Oost J. . ( 2003;). TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. Trends Biochem Sci 28: 170–173 [CrossRef] [PubMed].
    [Google Scholar]
  15. Fiorentino G. , Ronca R. , Cannio R. , Rossi M. , Bartolucci S. . ( 2007;). MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus . J Bacteriol 189: 7351–7360 [CrossRef] [PubMed].
    [Google Scholar]
  16. Fiorentino G. , Del Giudice I. , Bartolucci S. , Durante L. , Martino L. , Del Vecchio P. . ( 2011;). Identification and physicochemical characterization of BldR2 from Sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor family. Biochemistry 50: 6607–6621 [CrossRef] [PubMed].
    [Google Scholar]
  17. Galagan J. E. , Minch K. , Peterson M. , Lyubetskaya A. , Azizi E. , Sweet L. , Gomes A. , Rustad T. , Dolganov G. , other authors . ( 2013;). The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499: 178–183 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gao C. H. , Yang M. , He Z.-G. . ( 2012;). Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis . PLoS One 7: e36255 [CrossRef] [PubMed].
    [Google Scholar]
  19. Gogliettino M. , Balestrieri M. , Pocsfalvi G. , Fiume I. , Natale L. , Rossi M. , Palmieri G. . ( 2010;). A highly selective oligopeptide binding protein from the archaeon Sulfolobus solfataricus . J Bacteriol 192: 3123–3131 [CrossRef] [PubMed].
    [Google Scholar]
  20. Higuchi R. , Krummel B. , Saiki R. K. . ( 1988;). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16: 7351–7367 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kumarevel T. , Tanaka T. , Nishio M. , Gopinath S. C. B. , Takio K. , Shinkai A. , Kumar P. K. R. , Yokoyama S. . ( 2008;). Crystal structure of the MarR family regulatory protein, ST1710, from Sulfolobus tokodaii strain 7. J Struct Biol 161: 9–17 [CrossRef] [PubMed].
    [Google Scholar]
  22. Langmead B. , Trapnell C. , Pop M. , Salzberg S. L. . ( 2009;). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lassmann T. , Hayashizaki Y. , Daub C. O. . ( 2009;). TagDust – a program to eliminate artifacts from next generation sequencing data. Bioinformatics 25: 2839–2840 [CrossRef] [PubMed].
    [Google Scholar]
  24. Li H. , Handsaker B. , Wysoker A. , Fennell T. , Ruan J. , Homer N. , Marth G. , Abecasis G. , Durbin R. , 1000 Genome Project Data Processing Subgroup . ( 2009;). The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079 [CrossRef] [PubMed].
    [Google Scholar]
  25. Li J. S. , Bi Y. T. , Dong C. , Yang J. F. , Liang W. D. . ( 2011;). Transcriptome analysis of adaptive heat shock response of Streptococcus thermophilus . PLoS One 6: e25777 [CrossRef] [PubMed].
    [Google Scholar]
  26. Maezato Y. , Dana K. , Blum P. . ( 2011;). Engineering thermoacido-philic archaea using linear DNA recombination. Methods Mol Biol 765: 435–445.[CrossRef]
    [Google Scholar]
  27. Martin R. G. , Rosner J. L. . ( 1995;). Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc Natl Acad Sci U S A 92: 5456–5460 [CrossRef] [PubMed].
    [Google Scholar]
  28. Miyazono K. , Tsujimura M. , Kawarabayasi Y. , Tanokura M. . ( 2007;). Crystal structure of an archaeal homologue of multidrug resistance repressor protein, EmrR, from hyperthermophilic archaea Sulfolobus tokodaii strain 7. Proteins 67: 1138–1146 [CrossRef] [PubMed].
    [Google Scholar]
  29. Palmieri G. , Casbarra A. , Fiume I. , Catara G. , Capasso A. , Marino G. , Onesti S. , Rossi M. . ( 2006;). Identification of the first archaeal oligopeptide-binding protein from the hyperthermophile Aeropyrum pernix . Extremophiles 10: 393–402 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pérez-Rueda E. , Collado-Vides J. . ( 2001;). Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria. J Mol Evol 53: 172–179 [CrossRef] [PubMed].
    [Google Scholar]
  31. R Development Core Team ( 2008;). r: A Language and Environment for Statistical Computing., Vienna: R Foundation for Statistical Computing;.
    [Google Scholar]
  32. Rolfsmeier M. , Blum P. . ( 1995;). Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus . J Bacteriol 177: 482–485 [PubMed].
    [Google Scholar]
  33. Sahlman L. , Wong W. , Powlowski J. . ( 1997;). A mercuric ion uptake role for the integral inner membrane protein, MerC, involved in bacterial mercuric ion resistance. J Biol Chem 272: 29518–29526 [CrossRef] [PubMed].
    [Google Scholar]
  34. Schelert J. , Dixit V. , Hoang V. , Simbahan J. , Drozda M. , Blum P. . ( 2004;). Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186: 427–437 [CrossRef] [PubMed].
    [Google Scholar]
  35. Schelert J. , Drozda M. , Dixit V. , Dillman A. , Blum P. . ( 2006;). Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus . J Bacteriol 188: 7141–7150 [CrossRef] [PubMed].
    [Google Scholar]
  36. Schelert J. , Rudrappa D. , Johnson T. , Blum P. . ( 2013;). Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus . Microbiology 159: 1198–1208 [CrossRef] [PubMed].
    [Google Scholar]
  37. Seitzer P. , Wilbanks E. G. , Larsen D. J. , Facciotti M. T. . ( 2012;). A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs. BMC Bioinformatics 13: 317 [CrossRef] [PubMed].
    [Google Scholar]
  38. Silver S. , Walderhaug M. . ( 1992;). Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteria. Microbiol Rev 56: 195–228 [PubMed].
    [Google Scholar]
  39. Simbahan J. , Kurth E. , Schelert J. , Dillman A. , Moriyama E. , Jovanovich S. , Blum P. . ( 2005;). Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Appl Environ Microbiol 71: 8836–8845 [CrossRef] [PubMed].
    [Google Scholar]
  40. Sone Y. , Nakamura R. , Pan-Hou H. , Itoh T. , Kiyono M. . ( 2013;). Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli . Biol Pharm Bull 36: 1835–1841 [CrossRef] [PubMed].
    [Google Scholar]
  41. Sowers K. R. , Blum P. H. , DasSarma S. . ( 2007;). Gene transfer in archaea. . In Methods for General and Molecular Microbiology , 3rd edn., pp. 800–824. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  42. Sulavik M. C. , Gambino L. F. , Miller P. F. . ( 1995;). The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol Med 1: 436–446 [PubMed].
    [Google Scholar]
  43. Tam R. , Saier M. H. Jr . ( 1993;). Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57: 320–346 [PubMed].
    [Google Scholar]
  44. Thomas G. H. , Southworth T. , León-Kempis M. R. , Leech A. , Kelly D. J. . ( 2006;). Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology 152: 187–198 [CrossRef] [PubMed].
    [Google Scholar]
  45. Wilbanks E. G. , Larsen D. J. , Neches R. Y. , Yao A. I. , Wu C.-Y. , Kjolby R. A. S. , Facciotti M. T. . ( 2012;). A workflow for genome-wide mapping of archaeal transcription factors with ChIP-seq. Nucleic Acids Res 40: e74 [CrossRef] [PubMed].
    [Google Scholar]
  46. Wilson J. R. , Leang C. , Morby A. P. , Hobman J. L. , Brown N. L. . ( 2000;). MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters?. FEBS Lett 472: 78–82 [CrossRef] [PubMed].
    [Google Scholar]
  47. Worthington P. , Hoang V. , Perez-Pomares F. , Blum P. . ( 2003;). Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus . J Bacteriol 185: 482–488 [CrossRef] [PubMed].
    [Google Scholar]
  48. Yu L. , Fang J. , Wei Y. . ( 2009;). Characterization of the ligand and DNA binding properties of a putative archaeal regulator ST1710. Biochemistry 48: 2099–2108 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000189
Loading
/content/journal/micro/10.1099/mic.0.000189
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error