1887

Abstract

Mercury is a heavy metal and toxic to all forms of life. Metal exposure can invoke a response to improve survival. In archaea, several components of a mercury response system have been identified, but it is not known whether metal transport is a member of this system. To identify such missing components, a peptide-tagged MerR transcription factor was used to localize enriched chromosome regions by chromosome immunoprecipitation combined with DNA sequence analysis. Such regions could serve as secondary regulatory binding sites to control the expression of additional genes associated with mercury detoxification. Among the 31 highly enriched loci, a subset of five was pursued as potential candidates based on their current annotations. Quantitative reverse transcription-PCR analysis of these regions with and without mercury treatment in WT and mutant strains lacking indicated significant regulatory responses under these conditions. Of these, a Family 5 extracellular solute-binding protein and the MarR transcription factor shown previously to control responses to oxidation were most strongly affected. Inactivation of the solute-binding protein by gene disruption increased the resistance of mutant cells to mercury challenge. Inductively coupled plasma-MS analysis of the mutant cell line following metal challenge indicated there was less intracellular mercury compared with the isogenic WT strain. Together, these regulated genes comprise new members of the archaeal MerR regulon and reveal a cascade of transcriptional control not previously demonstrated in this model organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000189
2015-12-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2423.html?itemId=/content/journal/micro/10.1099/mic.0.000189&mimeType=html&fmt=ahah

References

  1. Alekshun M. N., Levy S. B. (1999). The mar regulon: multiple resistance to antibiotics and other toxic chemicalsTrends Microbiol 7410413 [View Article][PubMed]. [Google Scholar]
  2. Allen M. B. (1959). Studies with Cyanidium caldarium, an anomalously pigmented chlorophyteArch Mikrobiol 32270277 [View Article][PubMed]. [Google Scholar]
  3. Ariza R. R., Cohen S. P., Bachhawat N., Levy S. B., Demple B. (1994). Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli J Bacteriol 176143148[PubMed]. [Google Scholar]
  4. Bailey T. L., Elkan C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymersProc Int Conf Intell Syst Mol Biol 22836[PubMed]. [Google Scholar]
  5. Bailey T. L., Gribskov M. (1998). Combining evidence using p-values: application to sequence homology searchesBioinformatics 144854 [View Article][PubMed]. [Google Scholar]
  6. Bare J. C., Koide T., Reiss D. J., Tenenbaum D., Baliga N. S. (2010). Integration and visualization of systems biology data in context of the genomeBMC Bioinformatics 11382 [View Article][PubMed]. [Google Scholar]
  7. Barkay T., Miller S. M., Summers A. O. (2003). Bacterial mercury resistance from atoms to ecosystemsFEMS Microbiol Rev 27355384 [View Article][PubMed]. [Google Scholar]
  8. Bini E., Dikshit V., Dirksen K., Drozda M., Blum P. (2002). Stability of mRNA in the hyperthermophilic archaeon Sulfolobus solfataricus RNA 811291136 [View Article][PubMed]. [Google Scholar]
  9. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. (1972). Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperatureArch Mikrobiol 845468 [View Article][PubMed]. [Google Scholar]
  10. Cohen S. P., Hächler H., Levy S. B. (1993). Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli J Bacteriol 17514841492[PubMed]. [Google Scholar]
  11. Di Fiore A., Fiorentino G., Vitale R. M., Ronca R., Amodeo P., Pedone C., Bartolucci S., De Simone G. (2009). Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in Archaea by MarR family proteinsJ Mol Biol 388559569 [View Article][PubMed]. [Google Scholar]
  12. Dixit V., Bini E., Drozda M., Blum P. (2004). Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus Antimicrob Agents Chemother 4819931999 [View Article][PubMed]. [Google Scholar]
  13. Ellison D. W., Miller V. L. (2006). Regulation of virulence by members of the MarR/SlyA familyCurr Opin Microbiol 9153159 [View Article][PubMed]. [Google Scholar]
  14. Ettema T. J., Huynen M. A., de Vos W. M., van der Oost J. (2003). TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistanceTrends Biochem Sci 28170173 [View Article][PubMed]. [Google Scholar]
  15. Fiorentino G., Ronca R., Cannio R., Rossi M., Bartolucci S. (2007). MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus J Bacteriol 18973517360 [View Article][PubMed]. [Google Scholar]
  16. Fiorentino G., Del Giudice I., Bartolucci S., Durante L., Martino L., Del Vecchio P. (2011). Identification and physicochemical characterization of BldR2 from Sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor familyBiochemistry 5066076621 [View Article][PubMed]. [Google Scholar]
  17. Galagan J. E., Minch K., Peterson M., Lyubetskaya A., Azizi E., Sweet L., Gomes A., Rustad T., Dolganov G., other authors. (2013). The Mycobacterium tuberculosis regulatory network and hypoxiaNature 499178183 [View Article][PubMed]. [Google Scholar]
  18. Gao C. H., Yang M., He Z.-G. (2012). Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis PLoS One 7e36255 [View Article][PubMed]. [Google Scholar]
  19. Gogliettino M., Balestrieri M., Pocsfalvi G., Fiume I., Natale L., Rossi M., Palmieri G. (2010). A highly selective oligopeptide binding protein from the archaeon Sulfolobus solfataricus J Bacteriol 19231233131 [View Article][PubMed]. [Google Scholar]
  20. Higuchi R., Krummel B., Saiki R. K. (1988). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactionsNucleic Acids Res 1673517367 [View Article][PubMed]. [Google Scholar]
  21. Kumarevel T., Tanaka T., Nishio M., Gopinath S. C. B., Takio K., Shinkai A., Kumar P. K. R., Yokoyama S. (2008). Crystal structure of the MarR family regulatory protein, ST1710, from Sulfolobus tokodaii strain 7J Struct Biol 161917 [View Article][PubMed]. [Google Scholar]
  22. Langmead B., Trapnell C., Pop M., Salzberg S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genomeGenome Biol 10R25 [View Article][PubMed]. [Google Scholar]
  23. Lassmann T., Hayashizaki Y., Daub C. O. (2009). TagDust – a program to eliminate artifacts from next generation sequencing dataBioinformatics 2528392840 [View Article][PubMed]. [Google Scholar]
  24. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R., 1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtoolsBioinformatics 2520782079 [View Article][PubMed]. [Google Scholar]
  25. Li J. S., Bi Y. T., Dong C., Yang J. F., Liang W. D. (2011). Transcriptome analysis of adaptive heat shock response of Streptococcus thermophilus PLoS One 6e25777 [View Article][PubMed]. [Google Scholar]
  26. Maezato Y., Dana K., Blum P. (2011). Engineering thermoacido-philic archaea using linear DNA recombinationMethods Mol Biol 765435445.[CrossRef] [Google Scholar]
  27. Martin R. G., Rosner J. L. (1995). Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequencesProc Natl Acad Sci U S A 9254565460 [View Article][PubMed]. [Google Scholar]
  28. Miyazono K., Tsujimura M., Kawarabayasi Y., Tanokura M. (2007). Crystal structure of an archaeal homologue of multidrug resistance repressor protein, EmrR, from hyperthermophilic archaea Sulfolobus tokodaii strain 7Proteins 6711381146 [View Article][PubMed]. [Google Scholar]
  29. Palmieri G., Casbarra A., Fiume I., Catara G., Capasso A., Marino G., Onesti S., Rossi M. (2006). Identification of the first archaeal oligopeptide-binding protein from the hyperthermophile Aeropyrum pernix Extremophiles 10393402 [View Article][PubMed]. [Google Scholar]
  30. Pérez-Rueda E., Collado-Vides J. (2001). Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteriaJ Mol Evol 53172179 [View Article][PubMed]. [Google Scholar]
  31. R Development Core Team (2008). r: A Language and Environment for Statistical Computing., ViennaR Foundation for Statistical Computing. [Google Scholar]
  32. Rolfsmeier M., Blum P. (1995). Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus J Bacteriol 177482485[PubMed]. [Google Scholar]
  33. Sahlman L., Wong W., Powlowski J. (1997). A mercuric ion uptake role for the integral inner membrane protein, MerC, involved in bacterial mercuric ion resistanceJ Biol Chem 2722951829526 [View Article][PubMed]. [Google Scholar]
  34. Schelert J., Dixit V., Hoang V., Simbahan J., Drozda M., Blum P. (2004). Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruptionJ Bacteriol 186427437 [View Article][PubMed]. [Google Scholar]
  35. Schelert J., Drozda M., Dixit V., Dillman A., Blum P. (2006). Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus J Bacteriol 18871417150 [View Article][PubMed]. [Google Scholar]
  36. Schelert J., Rudrappa D., Johnson T., Blum P. (2013). Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus Microbiology 15911981208 [View Article][PubMed]. [Google Scholar]
  37. Seitzer P., Wilbanks E. G., Larsen D. J., Facciotti M. T. (2012). A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifsBMC Bioinformatics 13317 [View Article][PubMed]. [Google Scholar]
  38. Silver S., Walderhaug M. (1992). Gene regulation of plasmid- and chromosome-determined inorganic ion transport in bacteriaMicrobiol Rev 56195228[PubMed]. [Google Scholar]
  39. Simbahan J., Kurth E., Schelert J., Dillman A., Moriyama E., Jovanovich S., Blum P. (2005). Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductaseAppl Environ Microbiol 7188368845 [View Article][PubMed]. [Google Scholar]
  40. Sone Y., Nakamura R., Pan-Hou H., Itoh T., Kiyono M. (2013). Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli Biol Pharm Bull 3618351841 [View Article][PubMed]. [Google Scholar]
  41. Sowers K. R., Blum P. H., DasSarma S. (2007). Gene transfer in archaea. In Methods for General and Molecular Microbiology3rd edn, pp. 800824. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M. Washington, DCAmerican Society for Microbiology. [Google Scholar]
  42. Sulavik M. C., Gambino L. F., Miller P. F. (1995). The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compoundsMol Med 1436446[PubMed]. [Google Scholar]
  43. Tam R., Saier M. H. Jr (1993). Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteriaMicrobiol Rev 57320346[PubMed]. [Google Scholar]
  44. Thomas G. H., Southworth T., León-Kempis M. R., Leech A., Kelly D. J. (2006). Novel ligands for the extracellular solute receptors of two bacterial TRAP transportersMicrobiology 152187198 [View Article][PubMed]. [Google Scholar]
  45. Wilbanks E. G., Larsen D. J., Neches R. Y., Yao A. I., Wu C.-Y., Kjolby R. A. S., Facciotti M. T. (2012). A workflow for genome-wide mapping of archaeal transcription factors with ChIP-seqNucleic Acids Res 40e74 [View Article][PubMed]. [Google Scholar]
  46. Wilson J. R., Leang C., Morby A. P., Hobman J. L., Brown N. L. (2000). MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters?FEBS Lett 4727882 [View Article][PubMed]. [Google Scholar]
  47. Worthington P., Hoang V., Perez-Pomares F., Blum P. (2003). Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus J Bacteriol 185482488 [View Article][PubMed]. [Google Scholar]
  48. Yu L., Fang J., Wei Y. (2009). Characterization of the ligand and DNA binding properties of a putative archaeal regulator ST1710Biochemistry 4820992108 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000189
Loading
/content/journal/micro/10.1099/mic.0.000189
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error