1887

Abstract

-Serine is one of the proteinogenic amino acids and participates in several essential processes in all organisms. In plants, the light-dependent photorespiratory and the light-independent phosphoserine pathways contribute to serine biosynthesis. In cyanobacteria, the light-dependent photorespiratory pathway for serine synthesis is well characterized, but the phosphoserine pathway has not been identified. Here, we investigated three candidate genes for enzymes of the phosphoserine pathway in sp. PCC 6803. Only the gene for the -3-phosphoglycerate dehydrogenase is correctly annotated in the genome database, whereas the 3-phosphoserine transaminase and 3-phosphoserine phosphatase (PSP) proteins are incorrectly annotated and were identified here. All enzymes were obtained as recombinant proteins and showed the activities necessary to catalyse the three-step phosphoserine pathway. The genes coding for the phosphoserine pathway were found in most cyanobacterial genomes listed in CyanoBase. The pathway seems to be essential for cyanobacteria, because it was impossible to mutate the gene coding for PSP in sp. PCC 6803 or in PCC 7942. A model approach indicates a 30–60 % contribution of the phosphoserine pathway to the overall serine pool. Hence, this study verified that cyanobacteria, similar to plants, use the phosphoserine pathway in addition to photorespiration for serine biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000055
2015-05-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/1050.html?itemId=/content/journal/micro/10.1099/mic.0.000055&mimeType=html&fmt=ahah

References

  1. Ali V., Nozaki T.. 2006; Biochemical and functional characterization of phosphoserine aminotransferase from Entamoeba histolytica, which possesses both phosphorylated and non-phosphorylated serine metabolic pathways. Mol Biochem Parasitol145:71–83 [CrossRef][PubMed]
    [Google Scholar]
  2. Allen A. E., Dupont C. L., Oborník M., Horák A., Nunes-Nesi A., McCrow J. P., Zheng H., Johnson D. A., Hu H. et al. 2011; Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature473:203–207 [CrossRef][PubMed]
    [Google Scholar]
  3. Anderson S. L., McIntosh L.. 1991; Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol173:2761–2767[PubMed]
    [Google Scholar]
  4. Baier K., Lehmann H., Stephan D. P., Lockau W.. 2004; NblA is essential for phycobilisome degradation in Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Microbiology150:2739–2749 [CrossRef][PubMed]
    [Google Scholar]
  5. Battchikova N., Himanen J. P., Ahjolahti M., Korpela T.. 1996; Phosphoserine aminotransferase from Bacillus circulans subsp. alkalophilus: purification, gene cloning and sequencing. Biochim Biophys Acta1295:187–194 [CrossRef][PubMed]
    [Google Scholar]
  6. Bauwe H., Hagemann M., Fernie A. R.. 2010; Photorespiration: players, partners and origin. Trends Plant Sci15:330–336 [CrossRef][PubMed]
    [Google Scholar]
  7. Belhumeur P., Fortin N., Clark M. W.. 1994; A gene from Saccharomyces cerevisiae which codes for a protein with significant homology to the bacterial 3-phosphoserine aminotransferase. Yeast10:385–389 [CrossRef][PubMed]
    [Google Scholar]
  8. Benstein R. M., Ludewig K., Wulfert S., Wittek S., Gigolashvili T., Frerigmann H., Gierth M., Flügge U. I., Krueger S.. 2013; Arabidopsis phosphoglycerate dehydrogenase1 of the phosphoserine pathway is essential for development and required for ammonium assimilation and tryptophan biosynthesis. Plant Cell25:5011–5029 [CrossRef][PubMed]
    [Google Scholar]
  9. Chardonnet S., Sakr S., Cassier-Chauvat C., Le Maréchal P., Chauvat F., Lemaire S. D., Decottignies P.. 2014; First proteomic study of S-glutathionylation in cyanobacteria. J Proteome Res14:59–71 [CrossRef][PubMed]
    [Google Scholar]
  10. Chiba Y., Oshima K., Arai H., Ishii M., Igarashi Y.. 2012; Discovery and analysis of cofactor-dependent phosphoglycerate mutase homologs as novel phosphoserine phosphatases in Hydrogenobacter thermophilus. J Biol Chem287:11934–11941 [CrossRef][PubMed]
    [Google Scholar]
  11. Colman B., Norman E. G.. 1997; Serine synthesis in cyanobacteria by a nonphotorespiratory pathway. Physiol Plant100:133–136 [CrossRef]
    [Google Scholar]
  12. Duncan K., Coggins J. R.. 1986; The serCaro A operon of Escherichia coli. A mixed function operon encoding enzymes from two different amino acid biosynthetic pathways. Biochem J234:49–57[PubMed]
    [Google Scholar]
  13. Eisenhut M., Kahlon S., Hasse D., Ewald R., Lieman-Hurwitz J., Ogawa T., Ruth W., Bauwe H., Kaplan A., Hagemann M.. 2006; The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol142:333–342 [CrossRef][PubMed]
    [Google Scholar]
  14. Eisenhut M., Ruth W., Haimovich M., Bauwe H., Kaplan A., Hagemann M.. 2008; The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci U S A105:17199–17204 [CrossRef][PubMed]
    [Google Scholar]
  15. Elhai J., Wolk C. P.. 1988; Conjugal transfer of DNA to cyanobacteria. Methods Enzymol167:747–754 [CrossRef][PubMed]
    [Google Scholar]
  16. Greenberg D. M., Ichihara A.. 1957; Further studies on the pathway of serine formation from carbohydrate. J Biol Chem224:331–340[PubMed]
    [Google Scholar]
  17. Grigorieva G., Shestakov S.. 1982; Transformation in the cyanobacterium Synechocystis sp. 6803. FEMS Microbiol Lett13:367–370 [CrossRef]
    [Google Scholar]
  18. Hagemann M., Fernie A. R., Espie G. S., Kern R., Eisenhut M., Reumann S., Bauwe H., Weber A. P.. 2013; Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biol (Stuttg)15:639–647 [CrossRef][PubMed]
    [Google Scholar]
  19. Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A., Jonasdottir A., Sigurdsson A., Baker A. et al. 2007; A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science316:1491–1493 [CrossRef][PubMed]
    [Google Scholar]
  20. Ho C. L., Saito K.. 2001; Molecular biology of the plastidic phosphorylated serine biosynthetic pathway in Arabidopsis thaliana. Amino Acids20:243–259 [CrossRef][PubMed]
    [Google Scholar]
  21. Ho C.-L., Noji M., Saito M., Yamazaki M., Saito K.. 1998; Molecular characterization of plastidic phosphoserine aminotransferase in serine biosynthesis from Arabidopsis. Plant J16:443–452 [CrossRef][PubMed]
    [Google Scholar]
  22. Ho C. L., Noji M., Saito M., Saito K.. 1999; Regulation of serine biosynthesis in Arabidopsis. Crucial role of plastidic 3-phosphoglycerate dehydrogenase in non-photosynthetic tissues. J Biol Chem274:397–402 [CrossRef][PubMed]
    [Google Scholar]
  23. Huege J., Goetze J., Schwarz D., Bauwe H., Hagemann M., Kopka J.. 2011; Modulation of the major paths of carbon in photorespiratory mutants of Synechocystis. PLoS One6:e16278 [CrossRef][PubMed]
    [Google Scholar]
  24. Jablonsky J., Schwarz D., Hagemann M.. 2014; Multi-level kinetic model explaining diverse roles of isozymes in prokaryotes. PLoS One9:e105292 [CrossRef][PubMed]
    [Google Scholar]
  25. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M. et al. 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res3:185–209 [CrossRef][PubMed]
    [Google Scholar]
  26. Knoop H., Zilliges Y., Lockau W., Steuer R.. 2010; The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. Plant Physiol154:410–422 [CrossRef][PubMed]
    [Google Scholar]
  27. Labarre J., Thuriaux P., Chauvat F.. 1987; Genetic analysis of amino acid transport in the facultatively heterotrophic cyanobacterium Synechocystis sp. strain 6803. J Bacteriol169:4668–4673[PubMed]
    [Google Scholar]
  28. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  29. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A.. 1979; An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem100:95–97 [CrossRef][PubMed]
    [Google Scholar]
  30. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; Clustal W and Clustal_X version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  31. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  32. Martin W., Schnarrenberger C.. 1997; The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet32:1–18 [CrossRef][PubMed]
    [Google Scholar]
  33. Muñoz-Bertomeu J., Anoman A., Flores-Tornero M., Toujani W., Rosa-Téllez S., Fernie A. R., Roje S., Segura J., Ros R.. 2013; The essential role of the phosphorylated pathway of serine biosynthesis in Arabidopsis. Plant Signal Behav8:e27104 [CrossRef][PubMed]
    [Google Scholar]
  34. Ochoa de Alda J. A., Esteban R., Diago M. L., Houmard J.. 2014; The plastid ancestor originated among one of the major cyanobacterial lineages. Nat Commun5:4937 [CrossRef][PubMed]
    [Google Scholar]
  35. Ouzounis C., Sander C.. 1993; Homology of the NifS family of proteins to a new class of pyridoxal phosphate-dependent enzymes. FEBS Lett322:159–164 [CrossRef][PubMed]
    [Google Scholar]
  36. Quintero M. J., Montesinos M. L., Herrero A., Flores E.. 2001; Identification of genes encoding amino acid permeases by inactivation of selected ORFs from the Synechocystis genomic sequence. Genome Res11:2034–2040 [CrossRef][PubMed]
    [Google Scholar]
  37. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y.. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol111:1–61 [CrossRef]
    [Google Scholar]
  38. Ros R., Muñoz-Bertomeu J., Krueger S.. 2014; Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci19:564–569 [CrossRef][PubMed]
    [Google Scholar]
  39. Scanlan D. J., Ostrowski M., Mazard S., Dufresne A., Garczarek L., Hess W. R., Post A. F., Hagemann M., Paulsen I., Partensky F.. 2009; Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev73:249–299 [CrossRef][PubMed]
    [Google Scholar]
  40. Sigrist C. J. A., de Castro E., Cerutti L., Cuche B. A., Hulo N., Bridge A., Bougueleret L., Xenarios I.. 2013; New and continuing developments at PROSITE. Nucleic Acids Res41:Database issueD344–D347 [CrossRef][PubMed]
    [Google Scholar]
  41. Timm S., Florian A., Wittmiss M., Jahnke K., Hagemann M., Fernie A. R., Bauwe H.. 2013; Serine acts as a metabolic signal for the transcriptional control of photorespiration-related genes in Arabidopsis. Plant Physiol162:379–389 [CrossRef][PubMed]
    [Google Scholar]
  42. Umbarger H. E., Umbarger M. A., Siu P. M.. 1963; Biosynthesis of serine in Escherichia coli and Salmonella typhimurium. J Bacteriol85:1431–1439[PubMed]
    [Google Scholar]
  43. Walton N. J., Woolhouse H. W.. 1986; Enzymes of serine and glycine metabolism in leaves and non-photosynthetic tissues of Pisum sativum L.. Planta167:119–128 [CrossRef][PubMed]
    [Google Scholar]
  44. Young J. D., Shastri A. A., Stephanopoulos G., Morgan J. A.. 2011; Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metab Eng13:656–665 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000055
Loading
/content/journal/micro/10.1099/mic.0.000055
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error