1887

Abstract

YedVW is one of the uncharacterized two-component systems (TCSs) of . In order to identify the regulation targets of YedVW, we performed genomic SELEX (systematic evolution of ligands by exponential enrichment) screening using phosphorylated YedW and an DNA library, and identified YedW-binding sites within three intergenic spacers, , and , along the genome. Using a reporter assay system, we found that transcription of encoding 5-hydroxyisourate hydrolase, was induced at high concentrations of either Cu or HO. Cu-dependent expression of was observed in the knockout mutant, but was reduced markedly in the -null mutant. However, HO-induced expression was observed in the -null mutant, but not in the -null mutant. Gel mobility shift and DNase I footprinting analyses showed binding of both YedW and CusR to essentially the same sequence within the promoter region. Taken together, we concluded that YedVW and CusSR formed a unique cooperative TCS pair by recognizing and regulating the same targets, but under different environmental conditions – YedVW played a role in HO response regulation, whilst CusSR played a role in Cu response regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000026
2015-04-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/729.html?itemId=/content/journal/micro/10.1099/mic.0.000026&mimeType=html&fmt=ahah

References

  1. Anraku Y., Gennis R. B.. ( 1987;). The aerobic respiratory chain of Escherichia coli. . Trends Biochem Sci 12:, 262–266. [CrossRef]
    [Google Scholar]
  2. Bouzat J. L., Hoostal M. J.. ( 2013;). Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria. . J Mol Evol 76:, 267–279. [CrossRef][PubMed]
    [Google Scholar]
  3. Cooper R. A., Knowles P. F., Brown D. E., McGuirl M. A., Dooley D. M.. ( 1992;). Evidence for copper and 3,4,6-trihydroxyphenylalanine quinone cofactors in an amine oxidase from the gram-negative bacterium Escherichia coli K-12. . Biochem J 288:, 337–340.[PubMed]
    [Google Scholar]
  4. Filipe P., Haigle J., Freitas J., Fernandes A., Mazière J.-C., Mazière C., Santus R., Morlière P.. ( 2002;). Anti- and pro-oxidant effects of urate in copper-induced low-density lipoprotein oxidation. . Eur J Biochem 269:, 5474–5483. [CrossRef][PubMed]
    [Google Scholar]
  5. Gort A. S., Ferber D. M., Imlay J. A.. ( 1999;). The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. . Mol Microbiol 32:, 179–191. [CrossRef][PubMed]
    [Google Scholar]
  6. Hasegawa A., Ogasawara H., Kori A., Teramoto J., Ishihama A.. ( 2008;). The transcription regulator AllR senses both allantoin and glyoxylate and controls a set of genes for degradation and reutilization of purines. . Microbiology 154:, 3366–3378. [CrossRef][PubMed]
    [Google Scholar]
  7. Hennebry S. C., Wright H. M., Likic V. A., Richardson S. J.. ( 2006;). Structural and functional evolution of transthyretin and transthyretin-like proteins. . Proteins 64:, 1024–1045. [CrossRef][PubMed]
    [Google Scholar]
  8. Hennebry S. C., Sait L. C., Mantena R., Humphrey T. J., Yang J., Scott T., Kupz A., Richardson S. J., Strugnell R. A.. ( 2012;). Salmonella typhimurium’s transthyretin-like protein is a host-specific factor important in fecal survival in chickens. . PLoS One 7:, e46675. [CrossRef][PubMed]
    [Google Scholar]
  9. Hodgkinson V., Petris M. J.. ( 2012;). Copper homeostasis at the host–pathogen interface. . J Biol Chem 287:, 13549–13555. [CrossRef][PubMed]
    [Google Scholar]
  10. Ishihama A.. ( 2010;). Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. . FEMS Microbiol Rev 34:, 628–645.[PubMed]
    [Google Scholar]
  11. Ishihama A.. ( 2012;). Prokaryotic genome regulation: a revolutionary paradigm. . Proc Jpn Acad, Ser B, Phys Biol Sci 88:, 485–508. [CrossRef][PubMed]
    [Google Scholar]
  12. Ishihama A., Kori A., Koshio E., Yamada K., Maeda H., Shimada T., Makinoshima H., Iwata A., Fujita N.. ( 2014;). Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. . J Bacteriol 196:, 2718–2727. [CrossRef][PubMed]
    [Google Scholar]
  13. Keyer K., Imlay J. A.. ( 1996;). Superoxide accelerates DNA damage by elevating free-iron levels. . Proc Natl Acad Sci U S A 93:, 13635–13640. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee Y., Lee D. H., Kho C. W., Lee A. Y., Jang M., Cho S., Lee C. H., Lee J. S., Myung P. K. et al. ( 2005;). Transthyretin-related proteins function to facilitate the hydrolysis of 5-hydroxyisourate, the end product of the uricase reaction. . FEBS Lett 579:, 4769–4774. [CrossRef][PubMed]
    [Google Scholar]
  15. Lemire J. A., Harrison J. J., Turner R. J.. ( 2013;). Antimicrobial activity of metals: mechanisms, molecular targets and applications. . Nat Rev Microbiol 11:, 371–384. [CrossRef][PubMed]
    [Google Scholar]
  16. Lukat G. S., McCleary W. R., Stock A. M., Stock J. B.. ( 1992;). Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. . Proc Natl Acad Sci U S A 89:, 718–722. [CrossRef][PubMed]
    [Google Scholar]
  17. Macomber L., Imlay J. A.. ( 2009;). The iron–sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. . Proc Natl Acad Sci U S A 106:, 8344–8349. [CrossRef][PubMed]
    [Google Scholar]
  18. McCleary W. R., Stock J. B.. ( 1994;). Acetyl phosphate and the activation of two-component response regulators. . J Biol Chem 269:, 31567–31572.[PubMed]
    [Google Scholar]
  19. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  20. Mizuno T.. ( 1997;). Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. . DNA Res 4:, 161–168. [CrossRef][PubMed]
    [Google Scholar]
  21. Munson G. P., Lam D. L., Outten F. W., O’Halloran T. V.. ( 2000;). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. . J Bacteriol 182:, 5864–5871. [CrossRef][PubMed]
    [Google Scholar]
  22. Ogasawara H., Hasegawa A., Kanda E., Miki T., Yamamoto K., Ishihama A.. ( 2007;a). Genomic SELEX search for target promoters under the control of the PhoQP–RstBA signal relay cascade. . J Bacteriol 189:, 4791–4799. [CrossRef][PubMed]
    [Google Scholar]
  23. Ogasawara H., Ishida Y., Yamada K., Yamamoto K., Ishihama A.. ( 2007;b). PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in Escherichia coli. . J Bacteriol 189:, 5534–5541. [CrossRef][PubMed]
    [Google Scholar]
  24. Ogasawara H., Yamada K., Kori A., Yamamoto K., Ishihama A.. ( 2010;). Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. . Microbiology 156:, 2470–2483. [CrossRef][PubMed]
    [Google Scholar]
  25. Ogasawara H., Shinohara S., Yamamoto K., Ishihama A.. ( 2012;). Novel regulation targets of the metal-response BasS–BasR two-component system of Escherichia coli. . Microbiology 158:, 1482–1492. [CrossRef][PubMed]
    [Google Scholar]
  26. Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B. L., Mori H., Mizuno T.. ( 2002;). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. . Mol Microbiol 46:, 281–291. [CrossRef][PubMed]
    [Google Scholar]
  27. Rensing C., Grass G.. ( 2003;). Escherichia coli mechanisms of copper homeostasis in a changing environment. . FEMS Microbiol Rev 27:, 197–213. [CrossRef][PubMed]
    [Google Scholar]
  28. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P.. ( 2000;). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. . Proc Natl Acad Sci U S A 97:, 652–656. [CrossRef][PubMed]
    [Google Scholar]
  29. Rintoul M. R., Cusa E., Baldomà L., Badia J., Reitzer L., Aguilar J.. ( 2002;). Regulation of the Escherichia coli allantoin regulon: coordinated function of the repressor AllR and the activator AllS. . J Mol Biol 324:, 599–610. [CrossRef][PubMed]
    [Google Scholar]
  30. Shimada T., Fujita N., Maeda M., Ishihama A.. ( 2005;). Systematic search for the Cra-binding promoters using genomic SELEX system. . Genes Cells 10:, 907–918. [CrossRef][PubMed]
    [Google Scholar]
  31. Simons R. W., Houman F., Kleckner N.. ( 1987;). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. . Gene 53:, 85–96. [CrossRef][PubMed]
    [Google Scholar]
  32. Vogels G. D., Van der Drift C.. ( 1976;). Degradation of purines and pyrimidines by microorganisms. . Bacteriol Rev 40:, 403–468.[PubMed]
    [Google Scholar]
  33. Walker J. R., Altamentova S., Ezersky A., Lorca G., Skarina T., Kudritska M., Ball L. J., Bochkarev A., Savchenko A.. ( 2006;). Structural and biochemical study of effector molecule recognition by the E. coli glyoxylate and allantoin utilization regulatory protein AllR. . J Mol Biol 358:, 810–828. [CrossRef][PubMed]
    [Google Scholar]
  34. Xi H., Schneider B. L., Reitzer L.. ( 2000;). Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. . J Bacteriol 182:, 5332–5341. [CrossRef][PubMed]
    [Google Scholar]
  35. Yamamoto K., Ishihama A.. ( 2005;). Transcriptional response of Escherichia coli to external copper. . Mol Microbiol 56:, 215–227. [CrossRef][PubMed]
    [Google Scholar]
  36. Yamamoto K., Hirao K., Oshima T., Aiba H., Utsumi R., Ishihama A.. ( 2005;). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. . J Biol Chem 280:, 1448–1456. [CrossRef][PubMed]
    [Google Scholar]
  37. Yamamoto K., Watanabe H., Ishihama A.. ( 2014;). Expression levels of transcription factors in Escherichia coli: growth phase- and growth condition-dependent variation of 90 regulators from six families. . Microbiology 160:, 1903–1913. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000026
Loading
/content/journal/micro/10.1099/mic.0.000026
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error