1887

Abstract

The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While () contains a single type I (TopoI) and a single type II (Gyrase) enzyme, () and other members harbour additional relaxases. TopoI is essential for survival. However, the necessity of TopoI or other relaxases in has not been investigated. To recognize the importance of TopoI for growth, physiology and gene expression of , we have developed a conditional knock-down strain of TopoI in . The TopoI-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in TopoI level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the TopoI-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of TopoI in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in TopoI level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000014
2015-02-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/341.html?itemId=/content/journal/micro/10.1099/mic.0.000014&mimeType=html&fmt=ahah

References

  1. Agustí G., Astola O., Rodríguez-Güell E., Julián E., Luquin M.. 2008; Surface spreading motility shown by a group of phylogenetically related, rapidly growing pigmented mycobacteria suggests that motility is a common property of mycobacterial species but is restricted to smooth colonies. J Bacteriol190:6894–6902 [CrossRef][PubMed]
    [Google Scholar]
  2. Ahmed W., Menon S., Godbole A. A., Karthik P. V., Nagaraja V.. 2014; Conditional silencing of topoisomerase I gene of Mycobacterium tuberculosis validates its essentiality for cell survival. FEMS Microbiol Lett353:116–123 [CrossRef][PubMed]
    [Google Scholar]
  3. Bhaduri T., Bagui T. K., Sikder D., Nagaraja V.. 1998a; DNA topoisomerase I from Mycobacterium smegmatis. An enzyme with distinct features. J Biol Chem273:13925–13932 [CrossRef][PubMed]
    [Google Scholar]
  4. Bhaduri T., Sikder D., Nagaraja V.. 1998b; Sequence specific interaction of Mycobacterium smegmatis topoisomerase I with duplex DNA. Nucleic Acids Res26:1668–1674 [CrossRef][PubMed]
    [Google Scholar]
  5. Billman-Jacobe H., McConville M. J., Haites R. E., Kovacevic S., Coppel R. L.. 1999; Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis. Mol Microbiol33:1244–1253 [CrossRef][PubMed]
    [Google Scholar]
  6. Blokpoel M. C., Murphy H. N., O’Toole R., Wiles S., Runn E. S., Stewart G. R., Young D. B., Robertson B. D.. 2005; Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res33:e22 [CrossRef][PubMed]
    [Google Scholar]
  7. Boldrin F., Casonato S., Dainese E., Sala C., Dhar N., Palù G., Riccardi G., Cole S. T., Manganelli R.. 2010; Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res38:e134 [CrossRef][PubMed]
    [Google Scholar]
  8. Branda S. S., Vik S., Friedman L., Kolter R.. 2005; Biofilms: the matrix revisited. Trends Microbiol13:20–26 [CrossRef][PubMed]
    [Google Scholar]
  9. Broccoli S., Rallu F., Sanscartier P., Cerritelli S. M., Crouch R. J., Drolet M.. 2004; Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation. Mol Microbiol52:1769–1779 [CrossRef][PubMed]
    [Google Scholar]
  10. Cameron A. D., Stoebel D. M., Dorman C. J.. 2011; DNA supercoiling is differentially regulated by environmental factors and FIS in Escherichia coli and Salmonella enterica. Mol Microbiol80:85–101 [CrossRef][PubMed]
    [Google Scholar]
  11. Champoux J. J.. 2001; DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem70:369–413 [CrossRef][PubMed]
    [Google Scholar]
  12. Chaturvedi V., Dwivedi N., Tripathi R. P., Sinha S.. 2007; Evaluation of Mycobacterium smegmatis as a possible surrogate screen for selecting molecules active against multi-drug resistant Mycobacterium tuberculosis. J Gen Appl Microbiol53:333–337 [CrossRef][PubMed]
    [Google Scholar]
  13. Deng S., Stein R. A., Higgins N. P.. 2005; Organization of supercoil domains and their reorganization by transcription. Mol Microbiol57:1511–1521 [CrossRef][PubMed]
    [Google Scholar]
  14. Dillon S. C., Dorman C. J.. 2010; Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol8:185–195 [CrossRef][PubMed]
    [Google Scholar]
  15. DiNardo S., Voelkel K. A., Sternglanz R., Reynolds A. E., Wright A.. 1982; Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell31:43–51 [CrossRef][PubMed]
    [Google Scholar]
  16. Dorman C. J.. 1991; DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun59:745–749[PubMed]
    [Google Scholar]
  17. Dorman C. J.. 2006; DNA supercoiling and bacterial gene expression. Sci Prog89:151–166 [CrossRef][PubMed]
    [Google Scholar]
  18. Dorman C. J., Ní Bhriain N.. 1993; DNA topology and bacterial virulence gene regulation. Trends Microbiol1:92–99 [CrossRef][PubMed]
    [Google Scholar]
  19. Dorman C. J., Barr G. C., Ni Bhriain N., Higgins C. F.. 1988; DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol170:2816–2826[PubMed]
    [Google Scholar]
  20. Dove S. L., Dorman C. J.. 1994; The site-specific recombination system regulating expression of the type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Mol Microbiol14:975–988 [CrossRef][PubMed]
    [Google Scholar]
  21. Drlica K.. 1992; Control of bacterial DNA supercoiling. Mol Microbiol6:425–433 [CrossRef][PubMed]
    [Google Scholar]
  22. Espeli O., Marians K. J.. 2004; Untangling intracellular DNA topology. Mol Microbiol52:925–931 [CrossRef][PubMed]
    [Google Scholar]
  23. Etienne G., Villeneuve C., Billman-Jacobe H., Astarie-Dequeker C., Dupont M. A., Daffé M.. 2002; The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. Microbiology148:3089–3100[PubMed]
    [Google Scholar]
  24. Etienne G., Laval F., Villeneuve C., Dinadayala P., Abouwarda A., Zerbib D., Galamba A., Daffé M.. 2005; The cell envelope structure and properties of Mycobacterium smegmatis mc2155: is there a clue for the unique transformability of the strain?. Microbiology151:2075–2086 [CrossRef][PubMed]
    [Google Scholar]
  25. Ferrándiz M. J., Martín-Galiano A. J., Schvartzman J. B., de la Campa A. G.. 2010; The genome of Streptococcus pneumoniae is organized in topology-reacting gene clusters. Nucleic Acids Res38:3570–3581 [CrossRef][PubMed]
    [Google Scholar]
  26. Galán J. E., Curtiss R. III. 1990; Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun58:1879–1885[PubMed]
    [Google Scholar]
  27. Ghosh S., Indi S. S., Nagaraja V.. 2013; Regulation of lipid biosynthesis, sliding motility, and biofilm formation by a membrane-anchored nucleoid-associated protein of Mycobacterium tuberculosis. J Bacteriol195:1769–1778 [CrossRef][PubMed]
    [Google Scholar]
  28. Gmuender H., Kuratli K., Gray C. P., Keck W., Evers S.. 2001; Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res11:28–42 [CrossRef][PubMed]
    [Google Scholar]
  29. Godbole A. A., Leelaram M. N., Bhat A. G., Jain P., Nagaraja V.. 2012; Characterization of DNA topoisomerase I from Mycobacterium tuberculosis: DNA cleavage and religation properties and inhibition of its activity. Arch Biochem Biophys528:197–203 [CrossRef][PubMed]
    [Google Scholar]
  30. Goldstein E., Drlica K.. 1984; Regulation of bacterial DNA supercoiling: plasmid linking numbers vary with growth temperature. Proc Natl Acad Sci U S A81:4046–4050 [CrossRef][PubMed]
    [Google Scholar]
  31. Hatfield G. W., Benham C. J.. 2002; DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet36:175–203 [CrossRef][PubMed]
    [Google Scholar]
  32. Higgins C. F., Dorman C. J., Stirling D. A., Waddell L., Booth I. R., May G., Bremer E.. 1988; A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell52:569–584 [CrossRef][PubMed]
    [Google Scholar]
  33. Hsieh L. S., Rouviere-Yaniv J., Drlica K.. 1991; Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock. J Bacteriol173:3914–3917[PubMed]
    [Google Scholar]
  34. Jain P., Nagaraja V.. 2002; An orphan gyrB in the Mycobacterium smegmatis genome uncovered by comparative genomics. J Genet81:105–110 [CrossRef][PubMed]
    [Google Scholar]
  35. Jain P., Nagaraja V.. 2005; An atypical type II topoisomerase from Mycobacterium smegmatis with positive supercoiling activity. Mol Microbiol58:1392–1405 [CrossRef][PubMed]
    [Google Scholar]
  36. Jain P., Nagaraja V.. 2006; Indispensable, functionally complementing N and C-terminal domains constitute site-specific topoisomerase I. J Mol Biol357:1409–1421 [CrossRef][PubMed]
    [Google Scholar]
  37. Joshi R. S., Piña B., Roca J.. 2012; Topoisomerase II is required for the production of long Pol II gene transcripts in yeast. Nucleic Acids Res40:7907–7915 [CrossRef][PubMed]
    [Google Scholar]
  38. Khoo K. H., Chatterjee D., Dell A., Morris H. R., Brennan P. J., Draper P.. 1996; Novel O-methylated terminal glucuronic acid characterizes the polar glycopeptidolipids of Mycobacterium habana strain TMC 5135. J Biol Chem271:12333–12342 [CrossRef][PubMed]
    [Google Scholar]
  39. King I. F., Yandava C. N., Mabb A. M., Hsiao J. S., Huang H. S., Pearson B. L., Calabrese J. M., Starmer J., Parker J. S..& other authors ( 2013; Topoisomerases facilitate transcription of long genes linked to autism. Nature501:58–62 [CrossRef][PubMed]
    [Google Scholar]
  40. Krogh B. O., Shuman S.. 2002; A poxvirus-like type IB topoisomerase family in bacteria. Proc Natl Acad Sci U S A99:1853–1858 [CrossRef][PubMed]
    [Google Scholar]
  41. Kusano S., Ding Q., Fujita N., Ishihama A.. 1996; Promoter selectivity of Escherichia coli RNA polymerase Eσ70 and Eσ38 holoenzymes. Effect of DNA supercoiling. J Biol Chem271:1998–2004 [CrossRef][PubMed]
    [Google Scholar]
  42. Martínez A., Torello S., Kolter R.. 1999; Sliding motility in mycobacteria. J Bacteriol181:7331–7338[PubMed]
    [Google Scholar]
  43. Massé E., Drolet M.. 1999; Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem274:16659–16664 [CrossRef][PubMed]
    [Google Scholar]
  44. Ni Bhriain N., Dorman C. J.. 1993; Isolation and characterization of a topA mutant of Shigella flexneri. Mol Microbiol7:351–358 [CrossRef][PubMed]
    [Google Scholar]
  45. O Cróinín T., Carroll R. K., Kelly A., Dorman C. J.. 2006; Roles for DNA supercoiling and the Fis protein in modulating expression of virulence genes during intracellular growth of Salmonella enterica serovar Typhimurium. Mol Microbiol62:869–882 [CrossRef][PubMed]
    [Google Scholar]
  46. Patterson J. H., McConville M. J., Haites R. E., Coppel R. L., Billman-Jacobe H.. 2000; Identification of a methyltransferase from Mycobacterium smegmatis involved in glycopeptidolipid synthesis. J Biol Chem275:24900–24906 [CrossRef][PubMed]
    [Google Scholar]
  47. Peter B. J., Arsuaga J., Breier A. M., Khodursky A. B., Brown P. O., Cozzarelli N. R.. 2004; Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol5:R87 [CrossRef][PubMed]
    [Google Scholar]
  48. Pruss G. J., Drlica K.. 1985; DNA supercoiling and suppression of the leu-500 promoter mutation. J Bacteriol164:947–949[PubMed]
    [Google Scholar]
  49. Pruss G. J., Drlica K.. 1986; Topoisomerase I mutants: the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci U S A83:8952–8956 [CrossRef][PubMed]
    [Google Scholar]
  50. Pruss G. J., Manes S. H., Drlica K.. 1982; Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell31:35–42 [CrossRef][PubMed]
    [Google Scholar]
  51. Ramón-García S., Mikut R., Ng C., Ruden S., Volkmer R., Reischl M., Hilpert K., Thompson C. J.. 2013; Targeting Mycobacterium tuberculosis and other microbial pathogens using improved synthetic antibacterial peptides. Antimicrob Agents Chemother57:2295–2303 [CrossRef][PubMed]
    [Google Scholar]
  52. Recht J., Kolter R.. 2001; Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol183:5718–5724 [CrossRef][PubMed]
    [Google Scholar]
  53. Recht J., Martínez A., Torello S., Kolter R.. 2000; Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol182:4348–4351 [CrossRef][PubMed]
    [Google Scholar]
  54. Reppas N. B., Wade J. T., Church G. M., Struhl K.. 2006; The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol Cell24:747–757 [CrossRef][PubMed]
    [Google Scholar]
  55. Rodrigues L., Ramos J., Couto I., Amaral L., Viveiros M.. 2011; Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol11:35 [CrossRef][PubMed]
    [Google Scholar]
  56. Saier M. H. Jr. 2008; The bacterial chromosome. Crit Rev Biochem Mol Biol43:89–134 [CrossRef][PubMed]
    [Google Scholar]
  57. Solano C., García B., Valle J., Berasain C., Ghigo J. M., Gamazo C., Lasa I.. 2002; Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol43:793–808 [CrossRef][PubMed]
    [Google Scholar]
  58. Steck T. R., Franco R. J., Wang J. Y., Drlica K.. 1993; Topoisomerase mutations affect the relative abundance of many Escherichia coli proteins. Mol Microbiol10:473–481 [CrossRef][PubMed]
    [Google Scholar]
  59. Sternglanz R., DiNardo S., Voelkel K. A., Nishimura Y., Hirota Y., Becherer K., Zumstein L., Wang J. C.. 1981; Mutations in the gene coding for Escherichia coli DNA topoisomerase I affect transcription and transposition. Proc Natl Acad Sci U S A78:2747–2751 [CrossRef][PubMed]
    [Google Scholar]
  60. Tessier M. C., Graveline R., Crost C., Desabrais J. A., Martin C., Drolet M., Harel J.. 2007; Effects of DNA supercoiling and topoisomerases on the expression of genes coding for F165(1), a P-like fimbriae. FEMS Microbiol Lett277:28–36 [CrossRef][PubMed]
    [Google Scholar]
  61. Travers A., Muskhelishvili G.. 2005; DNA supercoiling – a global transcriptional regulator for enterobacterial growth?. Nat Rev Microbiol3:157–169 [CrossRef][PubMed]
    [Google Scholar]
  62. Trucksis M., Golub E. I., Zabel D. J., Depew R. E.. 1981; Escherichia coli and Salmonella typhimurium supX genes specify deoxyribonucleic acid topoisomerase I. J Bacteriol147:679–681[PubMed]
    [Google Scholar]
  63. Uplekar S., Rougemont J., Cole S. T., Sala C.. 2013; High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Res41:961–977 [CrossRef][PubMed]
    [Google Scholar]
  64. Urios A., Herrera G., Aleixandre V., Blanco M.. 1990; Expression of the recA gene is reduced in Escherichia coli topoisomerase I mutants. Mutat Res243:267–272 [CrossRef][PubMed]
    [Google Scholar]
  65. Wade J. T., Struhl K.. 2008; The transition from transcriptional initiation to elongation. Curr Opin Genet Dev18:130–136 [CrossRef][PubMed]
    [Google Scholar]
  66. Wang J. C.. 1985; DNA topoisomerases. Annu Rev Biochem54:665–697 [CrossRef][PubMed]
    [Google Scholar]
  67. Wang J. C.. 2002; Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol3:430–440 [CrossRef][PubMed]
    [Google Scholar]
  68. Webber M. A., Ricci V., Whitehead R., Patel M., Fookes M., Ivens A., Piddock L. J.. 2013; Clinically relevant mutant DNA gyrase alters supercoiling, changes the transcriptome, and confers multidrug resistance. MBio4:e00273-13 [CrossRef][PubMed]
    [Google Scholar]
  69. Westerhoff H. V., O’Dea M. H., Maxwell A., Gellert M.. 1988; DNA supercoiling by DNA gyrase. Cell Biophys12:157–181 [CrossRef][PubMed]
    [Google Scholar]
  70. Zumstein L., Wang J. C.. 1986; Probing the structural domains and function in vivo of Escherichia coli DNA topoisomerase I by mutagenesis. J Mol Biol191:333–340 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000014
Loading
/content/journal/micro/10.1099/mic.0.000014
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error