1887

Abstract

Two-component signalling systems allow bacteria to recognize and respond to diverse environmental stimuli. Auxiliary proteins can provide an additional layer of control to these systems. The FeuPQ two-component system is required for symbiotic development and is negatively regulated by the auxiliary small periplasmic protein FeuN. This study explores the mechanistic basis of this regulation. We provide evidence that FeuN directly interacts with the sensor kinase FeuQ. Isolation and characterization of an extensive set of FeuN-insensitive and FeuN-mimicking variants of FeuQ reveal specific FeuQ residues (periplasmic and intracellular) that control the transmission of FeuN-specific signalling information. Similar analysis of the FeuN protein highlights short patches of compatibly charged residues on each protein that probably engage one another, giving rise to the downstream effects on target gene expression. The accumulated evidence suggests that the periplasmic interaction between FeuN and FeuQ introduces an intracellular conformational change in FeuQ, resulting in an increase in its ability to remove phosphate from its cognate response regulator FeuP. These observations underline the complex manner in which membrane-spanning sensor kinases interface with the extracytoplasmic environment and convert that information to changes in intracellular processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000002
2015-02-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/244.html?itemId=/content/journal/micro/10.1099/mic.0.000002&mimeType=html&fmt=ahah

References

  1. Arnold K., Bordoli L., Kopp J., Schwede T.. ( 2006;). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. . Bioinformatics 22:, 195–201. [CrossRef][PubMed]
    [Google Scholar]
  2. Atkinson M. R., Ninfa A. J.. ( 1993;). Mutational analysis of the bacterial signal-transducing protein kinase/phosphatase nitrogen regulator II (NRII or NtrB). . J Bacteriol 175:, 7016–7023.[PubMed]
    [Google Scholar]
  3. Buelow D. R., Raivio T. L.. ( 2010;). Three (and more) component regulatory systems – auxiliary regulators of bacterial histidine kinases. . Mol Microbiol 75:, 547–566. [CrossRef][PubMed]
    [Google Scholar]
  4. Carlyon R. E., Ryther J. L., VanYperen R. D., Griffitts J. S.. ( 2010;). FeuN, a novel modulator of two-component signalling identified in Sinorhizobium meliloti. . Mol Microbiol 77:, 170–182. [CrossRef][PubMed]
    [Google Scholar]
  5. Casino P., Rubio V., Marina A.. ( 2010;). The mechanism of signal transduction by two-component systems. . Curr Opin Struct Biol 20:, 763–771. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen E. J., Sabio E. A., Long S. R.. ( 2008;). The periplasmic regulator ExoR inhibits ExoS/ChvI two-component signalling in Sinorhizobium meliloti. . Mol Microbiol 69:, 1290–1303. [CrossRef][PubMed]
    [Google Scholar]
  7. Ferris H. U., Dunin-Horkawicz S., Hornig N., Hulko M., Martin J., Schultz J. E., Zeth K., Lupas A. N., Coles M.. ( 2012;). Mechanism of regulation of receptor histidine kinases. . Structure 20:, 56–66. [CrossRef][PubMed]
    [Google Scholar]
  8. Fields A. T., Navarrete C. S., Zare A. Z., Huang Z., Mostafavi M., Lewis J. C., Rezaeihaghighi Y., Brezler B. J., Ray S.. & other authors ( 2012;). The conserved polarity factor podJ1 impacts multiple cell envelope-associated functions in Sinorhizobium meliloti. . Mol Microbiol 84:, 892–920. [CrossRef][PubMed]
    [Google Scholar]
  9. Gao R., Stock A. M.. ( 2009;). Biological insights from structures of two-component proteins. . Annu Rev Microbiol 63:, 133–154. [CrossRef][PubMed]
    [Google Scholar]
  10. Garnerone A.-M., Cabanes D., Foussard M., Boistard P., Batut J.. ( 1999;). Inhibition of the FixL sensor kinase by the FixT protein in Sinorhizobium meliloti. . J Biol Chem 274:, 32500–32506. [CrossRef][PubMed]
    [Google Scholar]
  11. Gerken H., Misra R.. ( 2010;). MzrA–EnvZ interactions in the periplasm influence the EnvZ/OmpR two-component regulon. . J Bacteriol 192:, 6271–6278. [CrossRef][PubMed]
    [Google Scholar]
  12. Gerken H., Charlson E. S., Cicirelli E. M., Kenney L. J., Misra R.. ( 2009;). MzrA: a novel modulator of the EnvZ/OmpR two-component regulon. . Mol Microbiol 72:, 1408–1422. [CrossRef][PubMed]
    [Google Scholar]
  13. Grant S. G., Jessee J., Bloom F. R., Hanahan D.. ( 1990;). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. . Proc Natl Acad Sci U S A 87:, 4645–4649. [CrossRef][PubMed]
    [Google Scholar]
  14. Griffitts J. S., Carlyon R. E., Erickson J. H., Moulton J. L., Barnett M. J., Toman C. J., Long S. R.. ( 2008;). A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis. . Mol Microbiol 69:, 479–490. [CrossRef][PubMed]
    [Google Scholar]
  15. Hoch J. A.. ( 2000;). Two-component and phosphorelay signal transduction. . Curr Opin Microbiol 3:, 165–170. [CrossRef][PubMed]
    [Google Scholar]
  16. Hsing W., Silhavy T. J.. ( 1997;). Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli. . J Bacteriol 179:, 3729–3735.[PubMed]
    [Google Scholar]
  17. Hsing W., Russo F. D., Bernd K. K., Silhavy T. J.. ( 1998;). Mutations that alter the kinase and phosphatase activities of the two-component sensor EnvZ. . J Bacteriol 180:, 4538–4546.[PubMed]
    [Google Scholar]
  18. Huynh T. N., Stewart V.. ( 2011;). Negative control in two-component signal transduction by transmitter phosphatase activity. . Mol Microbiol 82:, 275–286. [CrossRef][PubMed]
    [Google Scholar]
  19. Jacques D. A., Langley D. B., Hynson R. M., Whitten A. E., Kwan A., Guss J. M., Trewhella J.. ( 2011;). A novel structure of an antikinase and its inhibitor. . J Mol Biol 405:, 214–226. [CrossRef][PubMed]
    [Google Scholar]
  20. Jeong D. W., Cho H., Jones M. B., Shatzkes K., Sun F., Ji Q., Liu Q., Peterson S. N., He C., Bae T.. ( 2012;). The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus. . Mol Microbiol 86:, 331–348. [CrossRef][PubMed]
    [Google Scholar]
  21. Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. . Proc Natl Acad Sci U S A 95:, 5752–5756. [CrossRef][PubMed]
    [Google Scholar]
  22. Kiefer F., Arnold K., Künzli M., Bordoli L., Schwede T.. ( 2009;). The SWISS-MODEL Repository and associated resources. . Nucleic Acids Res 37: (Database issue), D387–D392. [CrossRef][PubMed]
    [Google Scholar]
  23. Miller J. H.. ( 1972;). Assay for β-galactosidase. . In Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  24. Mitrophanov A. Y., Groisman E. A.. ( 2008;). Signal integration in bacterial two-component regulatory systems. . Genes Dev 22:, 2601–2611. [CrossRef][PubMed]
    [Google Scholar]
  25. Neiditch M. B., Federle M. J., Pompeani A. J., Kelly R. C., Swem D. L., Jeffrey P. D., Bassler B. L., Hughson F. M.. ( 2006;). Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. . Cell 126:, 1095–1108. [CrossRef][PubMed]
    [Google Scholar]
  26. Ninfa A. J., Magasanik B.. ( 1986;). Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. . Proc Natl Acad Sci U S A 83:, 5909–5913. [CrossRef][PubMed]
    [Google Scholar]
  27. Parkinson J. S.. ( 2010;). Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. . Annu Rev Microbiol 64:, 101–122. [CrossRef][PubMed]
    [Google Scholar]
  28. Penterman J., Abo R. P., De Nisco N. J., Arnold M. F., Longhi R., Zanda M., Walker G. C.. ( 2014;). Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. . Proc Natl Acad Sci U S A 111:, 3561–3566. [CrossRef][PubMed]
    [Google Scholar]
  29. Pini F., Frage B., Ferri L., De Nisco N. J., Mohapatra S. S., Taddei L., Fioravanti A., Dewitte F., Galardini M.. & other authors ( 2013;). The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti. . Mol Microbiol 90:, 54–71.[PubMed]
    [Google Scholar]
  30. Pioszak A. A., Ninfa A. J.. ( 2003a;). Mechanism of the PII-activated phosphatase activity of Escherichia coli NRII (NtrB): how the different domains of NRII collaborate to act as a phosphatase. . Biochemistry 42:, 8885–8899. [CrossRef][PubMed]
    [Google Scholar]
  31. Pioszak A. A., Ninfa A. J.. ( 2003b;). Genetic and biochemical analysis of phosphatase activity of Escherichia coli NRII (NtrB) and its regulation by the PII signal transduction protein. . J Bacteriol 185:, 1299–1315. [CrossRef][PubMed]
    [Google Scholar]
  32. Rowland S. L., Burkholder W. F., Cunningham K. A., Maciejewski M. W., Grossman A. D., King G. F.. ( 2004;). Structure and mechanism of action of Sda, an inhibitor of the histidine kinases that regulate initiation of sporulation in Bacillus subtilis. . Mol Cell 13:, 689–701. [CrossRef][PubMed]
    [Google Scholar]
  33. Russo F. D., Silhavy T. J.. ( 1993;). The essential tension: opposed reactions in bacterial two-component regulatory systems. . Trends Microbiol 1:, 306–310. [CrossRef][PubMed]
    [Google Scholar]
  34. Schlüter J.-P., Reinkensmeier J., Barnett M. J., Lang C., Krol E., Giegerich R., Long S. R., Becker A.. ( 2013;). Global mapping of transcription start sites and promoter motifs in the symbiotic α-proteobacterium Sinorhizobium meliloti 1021. . BMC Genomics 14:, 156. [CrossRef][PubMed]
    [Google Scholar]
  35. Szurmant H., Bu L., Brooks C. L. III, Hoch J. A.. ( 2008;). An essential sensor histidine kinase controlled by transmembrane helix interactions with its auxiliary proteins. . Proc Natl Acad Sci U S A 105:, 5891–5896. [CrossRef][PubMed]
    [Google Scholar]
  36. Tanaka T., Saha S. K., Tomomori C., Ishima R., Liu D., Tong K. I., Park H., Dutta R., Qin L.. & other authors ( 1998;). NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. . Nature 396:, 88–92. [CrossRef][PubMed]
    [Google Scholar]
  37. Wang L., Grau R., Perego M., Hoch J. A.. ( 1997;). A novel histidine kinase inhibitor regulating development in Bacillus subtilis. . Genes Dev 11:, 2569–2579. [CrossRef][PubMed]
    [Google Scholar]
  38. Willett J. W., Kirby J. R.. ( 2012;). Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. . PLoS Genet 8:, e1003084. [CrossRef][PubMed]
    [Google Scholar]
  39. Zhou X., Keller R., Volkmer R., Krauss N., Scheerer P., Hunke S.. ( 2011;). Structural basis for two-component system inhibition and pilus sensing by the auxiliary CpxP protein. . J Biol Chem 286:, 9805–9814. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000002
Loading
/content/journal/micro/10.1099/mic.0.000002
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error