1887

Abstract

has a limited life span, measured by the reproductive capacity of the individual cell. Several genes that are differentially expressed during the yeast life span have been isolated. One of these genes, has been characterized for its role in longevity. is preferentially expressed in young cells. It encodes a predicted 680 amino acid protein with a putative transmembrane helix. The sequence does not show significant similarity to any other DNA or protein sequences in the databases. Deletion of in a haploid strain did not affect growth, but it resulted in a 50% decrease in the mean and maximum life span. When was overexpressed, the mean and maximum life span of the yeasts was extended by about 36% and 54%, respectively. These results indicate that this is a longevity-assurance gene in yeast.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-142-8-2289
1996-08-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/142/8/mic-142-8-2289.html?itemId=/content/journal/micro/10.1099/13500872-142-8-2289&mimeType=html&fmt=ahah

References

  1. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. (editors) 1987 Current Protocols in Molecular Biology New York: John Wiley and Sons;
    [Google Scholar]
  2. Bairoch A. 1990 PROSITE: A Dictionary of Protein Sites and Patterns Sixth release University of Geneva;
    [Google Scholar]
  3. Bennetzen J.L., Hall B.D. 1982; Codon selection in yeast. J Biol Chem 257:3026–3031
    [Google Scholar]
  4. Broach J.R., Deschenes R. 1990; The function of RAS genes in Saccharomyces cerevisiae. . Adv Cancer Ret 54:79–139
    [Google Scholar]
  5. Buck S., Nicholson M., Dudas S.P., Wells R.A., Force A., Baker G.T. III Arking R. 1993; Larval regulation of adult longevity in a genetically-selected long-lived strain of Drosophila. . Heredity 71:11–22
    [Google Scholar]
  6. Chen J.B., Sun J., Jazwinski S.M. 1990; Prolongation of the yeast life span by the v-Ha -RAS oncogene. Mol Microbiol 4:2081–2086
    [Google Scholar]
  7. D’Mello N.P., Childress A.M., Franklin D.S., Kale S.P., Pinswasdi C., Jazwinski S.M. 1994; Cloning and characterization of LAG2, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459
    [Google Scholar]
  8. Egilmez N.K., Jazwinski S.M. 1989; Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. . J Bacteriol 171:37–42
    [Google Scholar]
  9. Egilmez N.K., Chen J.B., Jazwinski S.M. 1989; Specific alterations in transcript prevalence during the yeast life span. J Biol Chem 264:14312–14317
    [Google Scholar]
  10. Eisenberg D., Schwarz E., Komaromy M., Wall R. 1984; Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179:125–142
    [Google Scholar]
  11. Finch C.E. 1990 Longevity, Senescence and the Genome Chicago, IL: University of Chicago Press;
    [Google Scholar]
  12. Friedman D.B., Johnson T.E. 1988; A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 18:75–86
    [Google Scholar]
  13. Gavel Y., von Heijne G. 1990; Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng 4:33–37
    [Google Scholar]
  14. Goldstein S. 1990; Replicative senescence: the human fibroblast comes of age. Science 249:1129–1133
    [Google Scholar]
  15. Guthrie C., Fink G.R. (editors) 1991 Guide to Yeast Genetics and Molecular Biology San Diego, CA: Academic Press;
    [Google Scholar]
  16. Hockenbery D., Nunez G., Milliman C., Schreiber R.D., Korsmeyer S.J. 1990; Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336
    [Google Scholar]
  17. Jazwinski S.M. 1993; The genetics of aging in the yeast Saccharomyces cerevisiae. . Genetica 91:35–51
    [Google Scholar]
  18. Johnson T.E. 1987; Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. . Proc Natl Acad Sci USA 843777–3781
    [Google Scholar]
  19. Johnston M., Davis R.W. 1984; Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. . Mol Cell Biol 4:1440–1448
    [Google Scholar]
  20. Kennedy B.K., Austriaco N.R. Jr Guarente L. 1994; Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J Cell Biol 127:1985–1993
    [Google Scholar]
  21. Kenyon C., Chang J., Gensch E., Rudner A., Tabtlang R. 1993; A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464
    [Google Scholar]
  22. Klein P., Kanehisa M., DeLisi C. 1985; The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815:468–476
    [Google Scholar]
  23. Kyte J., Doolittle R.F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132
    [Google Scholar]
  24. Luckinbill L. S., Arking R., Clare M. J., Cirocco W. C., Buck S. A. 1984; Selection for delayed senescence in Drosophila melanogaster. Evolution 38:996–1003
    [Google Scholar]
  25. Lumpkin C.K., McClung J.K., Pereira-Smith O.M., Smith J.R. 1986; Existence of high abundance antiproliferative mRNAs in senescent human diploid fibroblasts. Science 232:393–395
    [Google Scholar]
  26. Mortimer R.K., Johnston J.R. 1959; Life span of individual yeast cells. Nature 183:1751–1752
    [Google Scholar]
  27. Muller I. 1971; Experiments on aging in single cells of Saccharomyces cerevisiae. . Arch Mikrobiol 77:20–25
    [Google Scholar]
  28. Muller I., Wolf F. 1978; A correlation between shortened life span and UV-sensitivity in some strains of Saccharomyces cerevisiae. . Mol Gen Genet 160:231–234
    [Google Scholar]
  29. Muller I., Zimmermann M., Becker D., Flomer M. 1980; Calendar life span versus budding life span of Saccharomyces cerevisiae. . Mech Ageing Dev 12:47–52
    [Google Scholar]
  30. Olson M.V., Dutchik J.E., Graham M.Y., Brodeur G.M., Helms G, Frank M., MacCollin M., Scheinman R., Frank T. 1986; Random-clone strategy for genomic restriction mapping in yeast. Proc Natl Acad Sci USA 83:7826–7830
    [Google Scholar]
  31. Pereira-Smith O.M., Smith J.R. 1988; Genetic analysis of indefinite division in human cells: identification of four comple-mentation groups. Proc Natl Acad Sci USA 856042–6046
    [Google Scholar]
  32. Rao M.J.K., Argos P.A. 1986; A conformational preference parameter to predict helices in integral membrane proteins. Biochim Biophys Acta 869:197–214
    [Google Scholar]
  33. Rogers S., Wells R., Rechsteiner M. 1986; Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368
    [Google Scholar]
  34. Rose M.R. 1984; Laboratory evolution of postponed senescence in Drosophila melanogaster. . Evolution 38:1004–1010
    [Google Scholar]
  35. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-termination inhibitors. Proc Natl Acad Sci USA 745463–5467
    [Google Scholar]
  36. Sherman F., Fink G.R., Hicks J.B. 1986 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Vieira J., Messing J. 1987; Production of single-stranded plasmid DNA. Methods Ensymol 153:3–11
    [Google Scholar]
  38. Wright W.E., Pereira-Smith O.M., Shay J.W. 1989; Reversible cellular senescence: Implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol 9:3088–3092
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-142-8-2289
Loading
/content/journal/micro/10.1099/13500872-142-8-2289
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error