1887

Abstract

Two lines of evidence suggest that, unlike in other organisms, the transfer RNAs of undergo rapid turnover . Firstly, the tRNA content of cells treated with rifampicin (an inhibitor of initiation of RNA synthesis) decreased rapidly and continuously. Secondly, the newly synthesized tRNAs were rapidly degraded even under normal conditions of growth; the average half life of tRNA was 11·8 min. The degradation is mediated by an enzyme(s), present in cytoplasm, that apparently degrades tRNA completely. Rapid turnover is balanced by an enhanced rate of tRNA biogenesis, which was calculated to be 2·5 times higher than that in .

Keyword(s): transfer RNA and Vibrio cholerae
Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1775
1994-07-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1775.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1775&mimeType=html&fmt=ahah

References

  1. Ben-Hamida F., Schlessinger D. 1965; Synthesis and breakdown of ribonucleic acid in Escherichia coli starving for nitrogen. Biochim Biopbys Acta 119:183–191
    [Google Scholar]
  2. Chattopadhyay S., Ghosh R. K. 1988a; Characterization of phage-specific transfer RNA molecules coded by Vibrio eltor phage e4 . Virology 165:606–608
    [Google Scholar]
  3. Chattopadhyay S., Ghosh R. K. 1988b; Localization of the transfer RNA gene on the physical map of Vibrio eltor phage e4 genome. Virology 162:337–345
    [Google Scholar]
  4. Chattopadhyay S., Ghosh R. K. 1989; The cloning and expression of transfer RNA gene cluster of eltor phage e4 . Virology 171:114–119
    [Google Scholar]
  5. Davis B. D., Luger S. M., Tai P. C. 1986; Role of ribosome degradation in the death of starved Escherichia coli cells. J Bacteriol 166:439–445
    [Google Scholar]
  6. Deutscher M.P. 1990; Ribonucleases, tRNA nucleotidyl transferase, and the 3' processing of tRNA. Prog Nucleic Acid Res Mol Biol 39:439–445
    [Google Scholar]
  7. Deutscher M.P., Evans J. A. 1977; Transfer RNA nucleotidyl transferase repairs all transfer RNA randomly. J Mol Biol 109:593–597
    [Google Scholar]
  8. Deutscher M. P., Lin J.-C., Evans J. A. 1977; Transfer RNA metabolism in Escherichia coli cells deficient in tRNA nucleotidyl transferase. J Mol Biol 117:1081–1094
    [Google Scholar]
  9. Deutscher M. P., Marlor C. W., Zaniewski R. 1985; RNase T is responsible for the end turnover of tRNA in Escherichia coli . Proc Natl Acad Sci USA 82:6427–6430
    [Google Scholar]
  10. Ghosh R.K., Deutscher M. P. 1978; Identification of an Escherichia coli nuclease acting on structurally altered transfer RNA molecules. J Biol Chem 253:997–1000
    [Google Scholar]
  11. Ghosh R.K., Guhathakurata I. 1989; Synthesis of phage-specific transfer RNA molecules by vibriophage 149. FEBS Lett 162:177–179
    [Google Scholar]
  12. Hou C. I., Gronlund A. F., Campbell J. J. R. 1966; Influence of phosphate starvation on cultures of Pseudomonas aeruginosa . J Bacteriol 92:851–855
    [Google Scholar]
  13. Kennell D., Kotoulas A. 1967; Magnesium starvation of Aerobacter aerogenes. I. Changes in nucleic acid composition. J Bacteriol 93:334–344
    [Google Scholar]
  14. King T. C., Sirdeskmukh R., Schlessinger D. 1986; Nucleolytic processing of ribonucleic acid transcripts in prokaryotes. Microbiol Rev 50:428–451
    [Google Scholar]
  15. McCarthy B. J. 1962; The effects of magnesium starvation on the ribosome content of Escherichia coli. Biochem Biophys Acta 55:880–888
    [Google Scholar]
  16. Mandal N., Ghosh R. K. 1988; Characterization of phage-specific transfer RNA molecules coded by Vibrio eltor phage e4 . Viroiogy 166:583–585
    [Google Scholar]
  17. Maruyama H., Mizuno D. 1965; The participation of ribo-nuclease in the degradation of Escherichia coli ribosomal ribonucleic acid as revealed by oligonucleotides accumulation in the phosphorus-deficient stage. Biochim Biopbys Acta 119:183–191
    [Google Scholar]
  18. Natori S., Nozawa R., Mizuno D. 1966; The turnover of ribosomal RNA of Escherichia coli in a magnesium-deficient stage. Biochim Biopbys Acta 114:245–253
    [Google Scholar]
  19. Nishi A., Okamura S., Yonagita T. 1967; Shift of cell-age distribution in the later phase of Escherichia coli culture. J Gen Appl Microbiol 13:103–119
    [Google Scholar]
  20. Nozawa R., Horiuchi T., Mizuno D. 1967; Degradation of ribosomal RNA in a temperature sensitive Escherichia coli . Arch Biochem Biopbys 118:402–409
    [Google Scholar]
  21. Peacock A.C., Dingman C. W. 1968; Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry 7:668–674
    [Google Scholar]
  22. Roy N. K., Das G., Balganesh T. S., Dey S. N., Ghosh R. K., Das J. 1982a; Enterotoxin production, DNA repair and alkaline phosphatase of Vibrio cholerae before and after animal passage. J Gen Microbiol 128:1927–1932
    [Google Scholar]
  23. Roy N. K., Ghosh R. K., Das J. 1982b; Monomeric alkaline phosphatase of Vibrio cholerae . J Bacteriol 150:1033–1039
    [Google Scholar]
  24. Wilson J. H., Kim J. S., Abelson J. N. 1972; Bacteriophage T4 transfer RNA. III. Clustering of the genes for T4 transfer RNA’s. J Mol Biol. 71:547–556
    [Google Scholar]
  25. Yuan D., Shen V. 1975; Stability of ribosomal and transfer ribonucleic acid in Escherichia coli B/r after treatment with ethylenedinitrilotetraacetic acid and rifampicin. J Bacteriol 122:425–432
    [Google Scholar]
  26. Zhang J., Deutscher M. P. 1988; Transfer RNA is a substrate of RNase D in vivo. J Biol Chem 263:17909–17912
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-7-1775
Loading
/content/journal/micro/10.1099/13500872-140-7-1775
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error