1887

Abstract

The position of junctions and the extent of the duplicated chromosomal regions in merodiploid strains were studied by quantitative DNA-DNA hybridization. We describe a method which allows (i) the identification of genes present in two copies per chromosome and (ii) the measurement of the amount of additional DNA in chromosomes with relatively large duplicated regions (about 10% or more). Analysis of previously described merodiploid strains GSY1127, GSY1800 and GSY1835 revealed that the duplicated segments represent 29 ± 2%, 7 ± 2% and 13 ± 2% of the chromosome, respectively. Small discrepancies between these and previous genetic linkage data are discussed. Support for a role of prophage SPβ in the formation of merodiploid GSY1835 is provided. In conclusion, the described method confirmed the genetic maps of the merodiploids previously obtained by transduction and transformation crosses and showed that a duplication of a segment is not accompanied by large deletions of other chromosomal regions, providing direct evidence that a cell can accommodate genomes of substantially increased size.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-7-1605
1994-07-01
2021-05-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/7/mic-140-7-1605.html?itemId=/content/journal/micro/10.1099/13500872-140-7-1605&mimeType=html&fmt=ahah

References

  1. Albertini A.M., Caramori T., Crabb W.D., Scoffone F., Galizzi A. The flaA locus of Bacillus subtilis is part of a large operot coding for flagellar structures, motility functions, and an ATPase-like polypeptide. J Bacteriol 1991; 173:3573–3579
    [Google Scholar]
  2. Anagnostopoulos C. Genetic analysis of Bacillus subtilis strains carrying chromosomal rearrangements. In Modern Trends in Bacterial Transformation and Transfection 1977 Edited bv Portoles A., Lopez R., Espinosa M. Amsterdam: Elsevier/ North Holland Biomedical Press; pp 211–230
    [Google Scholar]
  3. Anagnostopoulos C. Genetic rearrangements in Bacillus subtilis. In The Bacterial Chromosome 1990 Edited by Riley M., Dtilica C. Washington, DC: American Society for Micro-biology; pp 361–371
    [Google Scholar]
  4. Anagnostopoulos C., Trowsdale J. Production of merodiploid clones in Bacillus subtilis. In Microbiology -1976 1976 Edited by Schlessinger D. Washington, DC: American Society for Microbiology; pp 44–57
    [Google Scholar]
  5. Audit C., Anagnostopoulos C. Production of stable and persistent unstable heterogenotes in a mutant of Bacillus subtilis. In Spore If 1972 Edited by Halvorson H.O., Hanson R., Campbell L.L. Washington, DC: American Society for Micro-biology; pp 117–125
    [Google Scholar]
  6. Band L., Shimotsu H., Henner D.J. Nucleotide sequence of the Bacillus subtilis trpE and trpD genes. Gene 1984; 27:55–65
    [Google Scholar]
  7. Burkholder P.R., Giles N.H. Induced biochemica I mutations in Bacillus subtilis. Am J Bot 1947; 34:345–348
    [Google Scholar]
  8. Collins M.E., Oultram J.D., Young M. Identification of restriction fragments from two cryptic Clostridium butyricum plasmids that promote the establishment of a replication-defective plasmid in Bacillus subtilis. J Gen Microbiol 1985; 131:2097–2105
    [Google Scholar]
  9. Del Sal G., Manfioletti G., Schneider C. A one-tube plasmid DNA mini-preparation suitable for Sequencing. Nucleic Acids Res 1988; 16:9878
    [Google Scholar]
  10. Donovan W., Zheng L., Sandman K., Losick R. Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol 1987; 196:1–10
    [Google Scholar]
  11. Feinberg A.P., Vogelstein B. A technique for radio-labelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 1983; 132:6–13
    [Google Scholar]
  12. Ferrari E., Henner D.J., Hoch J.A. Isolation of Bacillus subtilis genes from a Charon 4A library. J Bacteriol 1981; 146:430–432
    [Google Scholar]
  13. Ferrari E., Henner D.I., Yang M.Y. Isolation of an alanine racemase from Bacillus subtilis and its use for plasmid maintenance in B. subtilis. Bio/Technology 1985a; 3:1003–1007
    [Google Scholar]
  14. Ferrari E., Scoffone F., Ciarrochi G., Galizzi A. Molecular cloning of a Bacillus subtilis genes involved in spore outgrowth. J Gen Microbiol 1985b; 131:2831–2838
    [Google Scholar]
  15. Gianni M., Galizzi A. Isolation of genes preferentially expressed during Bacillus subtilis spore outgrowth. J Bacteriol 1986; 165:123–132
    [Google Scholar]
  16. Grossberger D. Minipreps of DNA from bacteriophage lambda. Nucleic Acids Res 1987; 15:6737
    [Google Scholar]
  17. Hackett R.H., Setlow P. Cloning, nucleotide sequencing, and genetic mapping of the gene for small, acid-soluble spore protein y of Bacillus subtilis. J Bacteriol 1987; 169:1985–1992
    [Google Scholar]
  18. Hauser P.M. Etude de la structure genet'tque des exfusionnantsde protoplastes et des souches merodiplo'ides chet,' Bacillus subtilis 1991 Switzerland: Thesis, University of Lausanne;
    [Google Scholar]
  19. Hauser P.M., Karamata D. Ploidy of Bacillus subtilis protoplasts exfusants: the haploid nature of cells forming colonies with biparental and prototrophic phenotypes. J Gen Microbiol 1992; 138:1077–1088
    [Google Scholar]
  20. Hauser P.M., Crabb W.D., Fiora M.G., Scoffone F., Galizzi A. Genetic analysis of the flaA locus of Bacillus subtilis. J Bacteriol 1991; 173:3580–3583
    [Google Scholar]
  21. Henner D.J., Band L., Shimotsu H. Nucleotide sequence of the Bacillus subtilis tryptophan operon. Gene 1984; 34:169–177
    [Google Scholar]
  22. Holmberg C., Rutberg B. Cloning of the glycerol kinase gene of Bacillus subtilis. FEMS Microbiol Lett 1989; 58:151–156
    [Google Scholar]
  23. Jarvis E.D., Cheng S., Rudner R. Genetic structure and DNA sequences at junctions involved in the rearrangements of Bacillus subtilis strains carrying the trpE26 mutation. Genetics 1990; 126:785–797
    [Google Scholar]
  24. Karamata D., Gross J.D. Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Mol tfe Gen Genet 1970; 108:277–287
    [Google Scholar]
  25. Kiss A., Posfai G., Keller C.C., Venetianer P., Roberts R.J. Nucleotide sequence of the BsuRl restriction-modification system. Nucleic Acids Res 1985; 13:6403–6421
    [Google Scholar]
  26. Lipsky R.H., Rosenthal R., Zahler S.A. Defective specialized SP/ transducing bacteriophages of Bacillus subtilis that carry the sup-3 or sup-44 gene. J Bacteriol 1981; 148:1012–1015
    [Google Scholar]
  27. Longchamp P. Etude de Torganisationgenetique du bacteriophage defectif PBSX de Bacillus subtilis par mutagenese d' insertion 1990 Diplome de biologiste: Universite de Lausanne;
    [Google Scholar]
  28. Maniatis T., Fritsch E.F., Sambrook J. Molecular Cloning: a Eaboratory Manual 1982 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Marmur J. A procedure for the isolation of deoxyribo-nucleic acid from microorganisms. J Mol Biol 1961; 3:208–218
    [Google Scholar]
  30. Maül C., Karamata D. Characterisation of proteins induced by mitomycin C treatment of Bacillus subtilis. J Virol 1984; 49:806–812
    [Google Scholar]
  31. Maül G., Young M., Margot P., Karamata D. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol and Gen Genet 1989; 215:388–394
    [Google Scholar]
  32. Ogasawara N., Moriya S., Mazza P.G., Yoshikawa H. Nucleotide sequence and organisation of dnaB and neighboring genes on the Bacillus subtilis chromosome. Nucleic Acids Res 1986; 14:9989–9999
    [Google Scholar]
  33. Perego M., Ferrari E., Bassi M.T., Galizzi A., Mazza P.G. Molecular cloning of Bacillus subtilis genes involved in DN A metabolism. Mol and Gen Genet 1987; 209:8–14
    [Google Scholar]
  34. Saxild H.H., Nygaard P. Gene-enzyme relationships of the purine biosynthetic pathway in Bacillus subtilis. Mol and Gen Genet 1988; 211:160–167
    [Google Scholar]
  35. Schaeffer P., Millet J., Aubert J.P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 1965; 54:704–711
    [Google Scholar]
  36. Schneider A.-M., Anagnostopoulos C. Linkage map and properties of a Bacillus subtilis strain carrying a non-tandem duplication of the purB-tre region of the chromosome. J Gen Microbiol 1981; 125:241–256
    [Google Scholar]
  37. Schneider A.-M., Anagnostopoulos C. Bacillus subtilis strains carrying two non-tandem duplications of the trpE-ilvA and the purB-tre regions of the chromosome. J Gen Microbiol 1983; 129:687–701
    [Google Scholar]
  38. Schneider A.-M., Gaisne M., Anagnostopoulos C. Genetic structure and internal rearrangements of stable mero-diploids from Bacillus subtilis strains carrying the trpE26 mutation. Genetics 1982; 101:189–210
    [Google Scholar]
  39. Trowsdale J., Anagnostopoulos C. Evidence for the translocation of a chromosome segment in Bacillus subtilis strains carrying the trpE26 mutation. J Bacteriol 1975; 122:886–898
    [Google Scholar]
  40. Yang M., Shimotsu H., Ferrari E., Henner D.J. Characterization and mapping of the Bacillus subtilis prtR gene. J Bacteriol 1987; 169:434–437
    [Google Scholar]
  41. Young M., Mauel C., Margot P., Karamata D. Pseudo-allelic relationship between non-homologous genes concerned with biosynthesis of polyglycerol phosphate and polyribitol phosphate teichoic acids in Bacillus subtilis strains 168 and W23. Mol Microbiol 1989; 3:1805–1812
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-7-1605
Loading
/content/journal/micro/10.1099/13500872-140-7-1605
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error