1887

Abstract

The plasmid pTnPF1 containing the transposon Tnwas introduced into the protoplasts of two strains in the presence of polyethylene glycol. Transpositions were produced at high temperature which inhibited plasmid replication and kanamycin was used for selection. Transposon Tnwas inserted randomly into the bacterial chromosome, producing different auxotrophic, prophage BLF and bacitracin-non-producing mutants. The auxotrophic mutant phenotypes were characterized by the Holliday-test and some mutations by hybridization with a transposon DNA probe. Insertions for the entire chromosome or for the prophage genophore were found at random, but preferred target sites were detected within limited regions, like the bacitracin synthetase or sulphate reductase genes. The partial physical map of the chromosomal region of bacitracin synthetase was constructed based on the hybridization patterns of insertion mutants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-11-3091
1994-11-01
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/11/mic-140-11-3091.html?itemId=/content/journal/micro/10.1099/13500872-140-11-3091&mimeType=html&fmt=ahah

References

  1. Bohall N.A., Vary P.S. Transposition of Tn917 in Bacillus megaterium. J Bacteriol 1986; 167:716–718
    [Google Scholar]
  2. Bron S. Plasmids. In Molecular Biological Methods for Bacillus 1990 Edited by Harwood C.R., Cutting S.M. Chichester: John Wiley; pp 75–174
    [Google Scholar]
  3. Doskočil J., Forstová J., Štorchová H. Physical mapping of LP51 and LP52 prophages of lysogenic strains of Bacillus licheniformis. Mol & Gen Genet 1986; 205:530–534
    [Google Scholar]
  4. Gutiérrez S., Díez B., Montenegro E., Martín J. F. Characterization of the Cephalosporium acremonium pcbAB gene encoding α-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol 1991; 173:2354–2365
    [Google Scholar]
  5. Hanlon G.W., Hodges N.A. Bacitracin and protease production in relation to sporulation during exponential growth of Bacillus licheniformis on poorly utilized carbon and nitrogen sources. J Bacteriol 1981; 147:427–431
    [Google Scholar]
  6. Hartley R.W., Paddon C.J. Use of plasmid pTV1 in transposon mutagenesis and gene cloning in Bacillus amylolique-faciens. Plasmid 1986; 16:45–51
    [Google Scholar]
  7. Holczinger A. Improvement of bacitracin production and bacteriophages of Bacillus licheniformis 1986 PhD Thesis, Budapest Technical University.;
    [Google Scholar]
  8. Holliday R. A new method for the identification of biochemical mutants of microorganisms. Nature 1956; 178:987
    [Google Scholar]
  9. Ishihara H., Hara N., Iwabuchi T. Molecular cloning and expression in Escherichia coli of the Bacillus licheniformis bacitracin synthetase 2 gene. J Bacteriol 1989; 171:1705–1711
    [Google Scholar]
  10. Korsnes L., Gulliksen O.-M., Sundan A., Nerland A. Cloning of genes from Bacillus licheniformis involved in synthesis of the peptide antibiotic bacitracin. In Bacillus Molecular Genetics and Biotechnology Applications 1986 Edited by Ganesan A.T., Hoch J.A. Orlando: Academic Press; pp 283–294
    [Google Scholar]
  11. Krátzschmar J., Krause M., Marahiel M.A. Gramicidin S biosynthesis operon containing the structural genesgrsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 1989; 171:5422–5429
    [Google Scholar]
  12. MacCabe A.P., Riach M.B.R., Unkles S.E., Kinghorn J.R. The Aspergillus nidulans npeA locus consists of three contiguous genes required for penicillin biosynthesis. EMBO J 1990; 9:279–287
    [Google Scholar]
  13. Malpartida F., Niemi J., Navarrete R., Hopwood D.A. Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 1990; 93:91–99
    [Google Scholar]
  14. Mittenhuber G., Weckermann R., Marahiel M.A. Gene cluster containing the genes for tyrocidine synthetases 1 and 2 from Bacillus brevis: evidence for an operon. J Bacteriol 1989; 171:4881–4887
    [Google Scholar]
  15. Nakano M.M., Magnuson R., Myers A., Curry J., Grossman A.D., Zuber P. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 1991; 173:1770–1778
    [Google Scholar]
  16. Perbal B. A Practical Guide to Molecular Cloning 1988, 2nd edn. New York: John Wiley;
    [Google Scholar]
  17. Perkins J.B., Youngman P.J. Construction and properties of Tn917—lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Proc Natl Acad Sci USA 1986; 83:140–144
    [Google Scholar]
  18. Prágai Z., Holczinger A., Sík T. Transformation of Bacillus licheniformis protoplasts by plasmid DNA. Microbiology 1994; 140:305–310
    [Google Scholar]
  19. Raibaud A., Zalacain M., Holt T.G., Tizard R., Thompson C.J. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus. J Bacteriol 1991; 173:4454–4463
    [Google Scholar]
  20. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: a Eaboratory Manual 1989, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Sandman K., Losick R., Youngman P. Genetic analysis of Bacillus subtilis spo mutations generated by Tn917-mediated insertional mutagenesis. Genetics 1987; 117:603–617
    [Google Scholar]
  22. Sík T., Horváth J., Chatterjee S. Generalized transduction in Rhizobium meliloti. Mol & Gen Genet 1980; 178:511–516
    [Google Scholar]
  23. Thorne C.B., Kowalski J.B. Temperate bacteriophages for Bacillus licheniformis. In Microbiology 1976 1976 Edited by Schlessinger D. Washington, DC: American Society for Microbiology; pp 303–314
    [Google Scholar]
  24. Tobin M.B., Kovacevic S., Madduri K., Hoskins J.A., Skatrud P.L., Vining L.C., Stuttard C., Miller J.R. Localization of the lysine ε-aminotransferase (lat) and δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (pcbAB) genes from Streptomyces clavuligerus and production of lysine ε-aminotransferase activity in Escherichia coli. J Bacteriol 1991; 173:6223–6229
    [Google Scholar]
  25. Tomich P.K., An F.Y., Clewell D.B. Properties of erythromycin-inducible transposon Tn917 in Streptococcus faecalis. J Bacteriol 1980; 141:1366–1374
    [Google Scholar]
  26. Vandeyar M.A., Zahler S.A. Chromosomal insertions of Tn917 in Bacillus subtilis. J Bacteriol 1986; 167:530–534
    [Google Scholar]
  27. Wati M.R., Priest F.G., Mitchell W.J. Mutagenesis using Tn917 in Bacillus licheniformis. FEMS Microbiol Lett 1990; 71:211–214
    [Google Scholar]
  28. Youngman P. Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other Gram-positive bacteria. In Plasmids: a Practical Approach 1987 Edited by Hardy K. Oxford: IRL Press; pp 79–103
    [Google Scholar]
  29. Youngman P. Use of transposons and integrational vectors for mutagenesis and construction of gene fusions in Bacillus species. In Molecular Biological Methods for Bacillus 1990 Edited by Harwood C.R., Cutting S.M. Chichester: John Wiley; pp 221–266
    [Google Scholar]
  30. Youngman P.J., Perkins J.B., Losick R. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci USA 1983; 80:2305–2309
    [Google Scholar]
  31. Youngman P., Perkins J.B., Losick R. A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol & Gen Genet 1984; 195:424–433
    [Google Scholar]
  32. Zagorec M., Steinmetz M. Construction of a derivative of Tn917 containing an outward-directed promoter and its use in Bacillus subtilis. J Gen Microbiol 1991; 137:107–112
    [Google Scholar]
  33. Zuberi A.R., Ying C., Parker H.M., Ordal G.W. Transposon Tn 917lacZ mutagenesis of Bacillus subtilis: identification of two new loci required for motility and chemotaxis. J Bacteriol 1990; 172:6841–6848
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-11-3091
Loading
/content/journal/micro/10.1099/13500872-140-11-3091
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error