1887

Abstract

SUMMARY: Bacteriophage Ω 8 is propagated in 56b (o8: K27: H), a non-capsulated strain. Another non-capsulated strain, 2398 (o8:K?:H), is killed by bacteriophage Ω 8 without phage propagation. This strain was formerly believed to be 093:K?:H, cross-reacting with strain 56b. We have established chemical and serological identity of the o8-specific lipopolysaccharides of the two strains.

The o8-specific lipopolysaccharides of both strains inhibited the infection of 56b with bacteriophage Ω 8 equally well. The adsorption rate constants of Ω 8 were identical for the two strains of o8. Evidence was obtained with P-labelled bacteriophage Ω 8 for penetration of viral DNA into both bacteria] strains. In host strain 56b, phage particle synthesis occurred normally. In strain 2398 the viral DNA was not degraded but its expression was blocked. The killing effect of D 8 on strain 2398 is supposed to be due to damage of the cytoplasmic membrane, which could not be reversed under the influence of viral information. This was indicated by a blockage of cellular respiration, -galactoside transport and RNA as well as protein synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-81-1-131
1974-03-01
2021-07-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/81/1/mic-81-1-131.html?itemId=/content/journal/micro/10.1099/00221287-81-1-131&mimeType=html&fmt=ahah

References

  1. Adams M. H. 1959 Bacteriophages pp. 461–469 New York: Interscience;
    [Google Scholar]
  2. Birdsell D. C., Cota-Robles E. H. 1967; Production and ultrastructure of lysozyme and EDTA-lysozyme spheroplasts of E. coli . Journal of Bacteriology 93:427–437
    [Google Scholar]
  3. Changeux J. P., Thiery J. 1967; On the mode of action of colicins: a model of regulation at the membrane level. Journal of Theoretical Biology 17:315–318
    [Google Scholar]
  4. Changeux J. P., Thiery J., Tung Y., Kittel C. 1967; On the co-operativity of biological membranes. Proceedings of the National Academy of Sciences of the United States of America 57:335–341
    [Google Scholar]
  5. Duckworth D. H. 1970; The metabolism of T4 phage ghost-infected cells. I. Macromolecular synthesis and transport of nucleic acid and protein precursors. Virology 40:673–684
    [Google Scholar]
  6. Fujimura R., Kaesberg P. 1962; The adsorption of bacteriophage X174 to its host. Biophysical Journal 2:433–449
    [Google Scholar]
  7. Horecker B. L., Thomas J., Monod J. 1960; Galactose transport in Escherichia coli. I. General properties as studied in a galactose kinase-less mutant. Journal of Molecular Biology 13:157–170
    [Google Scholar]
  8. Jann K., Schmidt G., Wallenfels B., Freund-Mölbert E. 1971; Isolation and characterization of Escherichia coli bacteriophage Ω 8 specific for E. coli strains belonging to sero-group o8. Journal of General Microbiology 67:289–297
    [Google Scholar]
  9. Kornberg H. L. 1973; Carbohydrate transport by microorganisms. Proceedings of the Royal Society B183:105–123
    [Google Scholar]
  10. Kundig W., Ghosh S., Roseman S. 1964; Phosphate bound to histidine in a protein as intermediate in a novel phosphotransport system. Proceedings of the National Academy of Sciences of the United States of America 52:1067–1074
    [Google Scholar]
  11. Kundig W., Kundig F. D., Anderson B., Roseman S. 1966; Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system. Journal of Biological Chemistry 241:3243–3246
    [Google Scholar]
  12. Lindberg A. A. 1967; Studies of a receptor for Felix 0–1 phage in Salmonella minnesota . Journal of General Microbiology 48:225–233
    [Google Scholar]
  13. Loeb T., Zinder N. D. 1961; A bacteriophage containing RNA. Proceedings of the National Academy of Sciences of the United States of America 47:282–289
    [Google Scholar]
  14. Loomis W. F., Magasanik B. 1964; The relation of catabolite repression to the induction system for β-galactosidase in Escherichia coli . Journal of Molecular Biology 8:417–426
    [Google Scholar]
  15. Lüderitz O., Staub A. M., Westphal O. 1966; Immunochemistry of O- and R-antigens of Salmonella and related enterobacteriaceae. Bacterial Reviews 30:192–255
    [Google Scholar]
  16. Luria S. E. 1964; Colicin-like effects of phage-ghosts. Annales de l’Institut Pasteur 107:67–72
    [Google Scholar]
  17. Mathews C. K. 1971 Bacteriophage Biochemistry p. 48 ACS Monograph 166 New York, Cincinnati, Toronto, London, Melbourne: Van Nostrand Reinhold;
    [Google Scholar]
  18. Munder P. G., Modollel M. 1965; Fortlaufende registrierende Bestimmung der Zellatmung durch elektrochemische Sauerstoffmessung. Zeitschrift für Analytische Chemie 212:177–187
    [Google Scholar]
  19. Nakada D., Magasanik B. 1964; The roles of inducer and catabolite repressor in the synthesis of β-galactosidase by Escherichia coli . Journal of Molecular Biology 8:105–127
    [Google Scholar]
  20. Newbold J. E., Sinsheimer R. L. 1970; The process of infection with bacteriophage øX174. XXXII. Early steps in the infection process: attachment, eclipse and DNA penetration. Journal of Molecular Biology 49:49–66
    [Google Scholar]
  21. Nomura M., Matsubara K., Okamoto K., Fujimura K. 1962; Inhibition of host nucleic acid and protein synthesis by bacteriophage T4: its relation to the physical and functional integrity of host chromosome. Journal of Molecular Biology 5:535–549
    [Google Scholar]
  22. Novick R. P., Brodsky R. 1972; Studies on plasmid replication. I. Plasmid incompatibility and establishment in Staphylococcus aureus . Journal of Molecular Biology 5:285–302
    [Google Scholar]
  23. Ørskov F., Ørskov I., Jann B., Jann K., Müller-Seitz E., Westphal O. 1967; Immunochemistry of Escherichia coli O antigens. Acta pathologica et microbiologica Scandinavia 71:339–358
    [Google Scholar]
  24. Pardee A. B., Jacob F., Monod J. 1959; The genetic control and cytoplasmic expression of inducibility in the synthesis of β-galactosidase. Journal of Molecular Biology 1:165–172
    [Google Scholar]
  25. Puck T. T., Lee H. H. 1954; Mechanism of cell wall penetration by viruses. I. An increase in host cell permeability induced by bacteriophage infection. Journal of Experimental Medicine 99:481–494
    [Google Scholar]
  26. Puck T. T., Lee H. H. 1955; Mechanism of cell wall penetration by viruses. II. Demonstration of cyclic permeability changes accompanying virus infection of Escherichia coli b cells. Journal of Experimental Medicine 101:151–162
    [Google Scholar]
  27. Rachelmeyer M., Gerhart J., Rosner J. 1961; Limited thymidine uptake in Escherichia coli due to an inducible thymidine phosphorylase. Biochimica et biophysica acta 49:222–225
    [Google Scholar]
  28. Reske K., Wallenfels B., Jann K. 1973; Enzymatic degradation of O-antigenic lipopolysaccharides by coliphageΩ 8. European Journal of Biochemistry 36:167–171
    [Google Scholar]
  29. Rickenberg H. V., Cohen G. N., Butting G., Monod J. 1956; La galactoside perméase d’Escherichia coli . Annales de l’Institut Pasteur 91:829–857
    [Google Scholar]
  30. Schlecht S., Westphal O. 1966; Wachstum und Lipopolysaccharid (O-Antigen)-Gehalt von Salmonellenbei Züchtung auf Agarnährböden I. Zentralblatt für Bakteriologie und Parasitenkunde Orig 200:241–259
    [Google Scholar]
  31. Simoni R. B., Smith M. F., Roseman S. 1968; Resolution of a staphylococcal phosphotransferase system into four protein components and its relation to sugar transport. Biochemical and Biophysical Research Communications 31:804–811
    [Google Scholar]
  32. Westphal O., Jann K. 1965; Bacterial lipopolysaccharide extraction with phenol-water and further applications of the procedure. Methods of Carbohydrate Chemistry 5:83–91
    [Google Scholar]
  33. Winkler H. M., Duckworth D. H. 1971; Metabolism of T4 bacteriophage ghost-infected cells: effect of bacteriophage and ghosts on the uptake of carbohydrates in Escherichia coli b . Journal of Bacteriology 107:259–267
    [Google Scholar]
  34. Winkler H. M., Wilson T. H. 1965; Energy coupling in the transport of β-galactosides by Escherichia coli . Journal of Biological Chemistry 241:2200–2211
    [Google Scholar]
  35. Yagil E., Rosner A. 1970; Effect of adenosine and deoxyadenosine on the incorporation and breakdown of thymidine in Escherichia coli . Journal of Bacteriology 101:417–421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-81-1-131
Loading
/content/journal/micro/10.1099/00221287-81-1-131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error