1887

Abstract

SUMMARY: -Methylthreonine (OM) inhibits multiplication and photosynthetic pigment synthesis in and ; it does not inhibit or . Inhibition of multiplication and pigment synthesis may be prevented by -isoleucine. OM also causes the permanent loss of chlorophyll and appreciable loss of carotenoids in and this may be prevented by -isoleucine, α-aminobutyric acid, α-ketobutyric acid, -threonine, -homoserine, or -methionine. α-Ketobutyric acid is most effective on a molar basis and is therefore postulated to be the target of OM inhibition.

Isoleucine plays a role in the biosynthesis of photosynthetic pigments and lipids in , for the incorporation of C--isoleucine radioactivity into both the pigments and lipids is markedly diminished by bleaching agents which prevent pigment synthesis without affecting multiplication, i.e. -methylthreonine or streptomycin. When pigment synthesis is blocked amino acids accumulate in the culture supernate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-27-1-75
1962-01-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/27/1/mic-27-1-75.html?itemId=/content/journal/micro/10.1099/00221287-27-1-75&mimeType=html&fmt=ahah

References

  1. Aaronson S., Scher S. 1960; Effect of aminotriazole and streptomycin on multiplication and pigment production of photosynthetic microorganisms. J. Protozool 7:156
    [Google Scholar]
  2. Anand N., Davis B. D. 1960; Damage by streptomycin to the cell membrane of Escherichia coli . Nature, Lond 185:22
    [Google Scholar]
  3. Afoshian H. V., Blair R. M., Morris M., Smithson C. H. 1959; The reversal of the inhibitory activity of l-penicillamine by branched chain amino acids. Biochim. biophys. Acta 36:93
    [Google Scholar]
  4. Brachet J. 1958; New observations on biochemical interactions between nucleus and cytoplasm in Amoeba and Acetabularia. Exp. Cell Res. (Suppl.) 6:78
    [Google Scholar]
  5. de Deken-Grenson M. 1960; Le mécanisme de la perte hereditaire d’une fonction biochimique: la synthese des chlorophylles. Arch. Biol., Paris 71:271
    [Google Scholar]
  6. de Deken-Grenson M., Godts A. 1960; Descendance of Euglena cells isolated after various bleaching treatments. Exp. Cell Res 19:376
    [Google Scholar]
  7. de Deken-Grenson M., Messin S. 1958; La continuité génétique des chloroplastes chez les Euglenes. I. Mecanisme de l’apparition des Hgn£es blanches dans les cultures traitles par la streptomycine. Biochim. biophys. Acta 27:145
    [Google Scholar]
  8. Feller D. D., Feist E. 1959; Metabolism of adipose tissue: incorporation of isoleucine carbon into lipids by slices of adipose tissue. J. Lipid Res 1:90
    [Google Scholar]
  9. Glover J., Goodwin T. W., Lijinsky W. 1951; Studies in carotenogenesis. 2. Carotene production by Phycomyces blakesleeanus: The effect of different amino acids when used in media containing low concentrations of glucose. Biochem. J 50:268
    [Google Scholar]
  10. Goodwin T. W., Jamikorn M. 1954; Studies in carotenogenesis. Some observations on carotenoid synthesis in two varieties of Euglena gracilis . J. Protozool 1:216
    [Google Scholar]
  11. Gray R. A., Hendlin D. 1956; Inhibition of growth and chlorophyll formation in plants by O-methylthreonine. Plant Physiol 31:xxi
    [Google Scholar]
  12. Gross J. A., Jahn T. L., Bernstein E. 1955; The effect of antihistamines on the pigments of green protista. J. Protozool 2:71
    [Google Scholar]
  13. Harding W. M., Shive W. 1954; Cyclopentane-glycine, an inhibitory analogue of isoleucine. J. biol. Chem 206:401
    [Google Scholar]
  14. Huzisige H., Terada T., Nishimura M., Uemura T. 1957; Effect of amino acids and steptomycine on the chlorophyll formation in Euglena. Biol. Okayama Univ 3:209
    [Google Scholar]
  15. Jírovec O. 1949; účfinek antibiotik na nĕktere prvoky. Mém. Soc. zool. tcMcosl 13:216
    [Google Scholar]
  16. Larsen H. 1952; On the culture and general physiology of the green sulfur bacteria. J. Bacl 64:187
    [Google Scholar]
  17. Lascelles J. 1955; The formation of porphyrins by photosynthetic bacteria. In Ciba Foundation Symposium on Porphyrin biosynthesis and metabolism p. 268 Ed. by Wolstenholme G. E. W., Millar E. C. P.
    [Google Scholar]
  18. Lwoff A., Dusi H. 1935; La suppression experimentale des chloroplastes chez Euglena mesnili . C.R. Soc. biol., Paris 119:1092
    [Google Scholar]
  19. Lwoff A., Schaeffer P. 1949; La decoloration d’Euglena gracilis par la streptomycine. C.R. Acad. Sd., Paris 228:779
    [Google Scholar]
  20. Pringsheim E. G. 1941; The interrelationships of pigmented and colourless flagellata. Biol. Rev 16:191
    [Google Scholar]
  21. Pringsheim E. G. 1958; Die Apoplastidie bei Euglena. Rev. Algol 4:41
    [Google Scholar]
  22. Pringsheim E. G., Pringsheim O. 1952; Experimental elimination of chromatophores and eye-spot in Euglena gracilis . New Phytol 51:65
    [Google Scholar]
  23. Provasoli L., Hutner S. H., Pintner I. J. 1951; Destruction of chloroplasts by streptomycin. Cold Spr. Harb. Symp. quant. Biol 16:113
    [Google Scholar]
  24. Provasoli L., Hutner S. H., Schatz A. 1948; Streptomycin-induced chlorophyll-less races of Euglena. Proc. Soc. exp. Biol., N.Y 69:279
    [Google Scholar]
  25. Rabinovitz M., Olson M. E., Greenberg D. M. 1955; Steric relationship between threonine and isoleucine as indicated by an antimetabolite study. J. Amer. chem. Soc 77:3109
    [Google Scholar]
  26. Roth H., Amos H., Davis B. D. 1960; Purine nucleotide excretion by Escherichia coli in the presence of streptomycin. Biochim. biophys. Acta 37:398
    [Google Scholar]
  27. Scher S., Aaronson S. 1958; Nutritional factors in apochlorosis: Comparative studies with algae and higher plants. Brookhaven Symp. Biol 11:343
    [Google Scholar]
  28. Strain H. H. 1958; Paper chromatography of chloroplast pigments: sorption at a liquid-liquid interface. J. phys. Chem 57:638
    [Google Scholar]
  29. Vavra J. 1957; The action of streptomycin on chloroplasts of the flagellate Euglena gracilis Klebs. Folia Biol 111:108
    [Google Scholar]
  30. Wolken J. J. 1956; A molecular morphology of Euglena gracilis var. badllaris. J. Proto-zool 3:211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-27-1-75
Loading
/content/journal/micro/10.1099/00221287-27-1-75
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error