1887

Abstract

This study was aimed at characterizing a cell-surface 25 kDa glycoprotein (GP25) that was previously shown to be underproduced by a spontaneous adhesion-defective mutant D5 of 20. An antiserum against wild-type strain 20 was adsorbed with the mutant D5 to enrich it in antibodies ‘specific’ to adhesion structures of 20. The resulting antiserum, called anti-Adh serum, blocked adhesion of 20 and reacted mainly with GP25 in bacterial and extracellular protein fractions of 20. The N-terminal sequence of purified GP25 was identical to that of CbpC, a 21 kDa cellulose-binding protein (CBP) of 8. The nucleotide sequence of the gene was determined by PCR and genomic walking procedures. The gene encoded a protein of 165 aa with a calculated molecular mass of 16940 Da that showed 729% identity with CbpC and presented homologies with type IV pilins of Gram-negative pathogenic bacteria. Negative-staining electron microscopy revealed fine and flexible pili surrounding 20 cells while mutant cells were not piliated. In addition, immunoelectron microscopy showed that the anti-Adh serum probing mainly GP25, completely decorated the pili surrounding 20, thereby showing that GP25 was a major pilus subunit. This study shows for the first time the presence of pili at the surface of and identifies GP25 as their major protein subunit. Though GP25 was not identified as a CBP, isolated pili were shown to bind cellulose. In conclusion, these pili, which belong to the family of type IV pili, mediate adhesion of 20 to cellulose.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1871
2002-06-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481871a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1871&mimeType=html&fmt=ahah

References

  1. Alm R. A., Mattick J. S. 1997; Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa . Gene 192:89–98 [CrossRef]
    [Google Scholar]
  2. Bayer E. A., Chanzy H., Lamed R., Shoham Y. 1998a; Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557 [CrossRef]
    [Google Scholar]
  3. Bayer E. A., Shimon L. J., Shoham Y., Lamed R. 1998b; Cellulosomes – structure and ultrastructure. J Struct Biol 124:221–234 [CrossRef]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Bryant M. P., Burkey L. A. 1953; Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J Diary Sci 36:205–217 [CrossRef]
    [Google Scholar]
  6. Castric P. 1995; pilO , a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141:1247–1254 [CrossRef]
    [Google Scholar]
  7. Chen J., Weimer P. 2001; Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology 147:21–30
    [Google Scholar]
  8. Ding S. Y., Rincon M. T., Lamed R., Martin J. C., McCrae S. I., Aurilia V., Shoham Y., Bayer E. A., Flint H. J. 2001; Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens . J Bacteriol 183:1945–1953 [CrossRef]
    [Google Scholar]
  9. Fernandez L. A., Berenguer J. 2000; Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiol Rev 24:21–44 [CrossRef]
    [Google Scholar]
  10. Forsberg C. W., Forano E., Chesson A. 2000; Microbial adherence to the plant cell wall and enzymatic hydrolysis. In Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction pp 79–97 Edited by Cronjé P. B. Wallingford: CABI Publishing;
    [Google Scholar]
  11. Hahn H. P. 1997; The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa – a review. Gene 192:99–108 [CrossRef]
    [Google Scholar]
  12. Halliwell G., Bryant M. P. 1963; The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J Gen Microbiol 32:441–448 [CrossRef]
    [Google Scholar]
  13. Hazes B., Sastry P. A., Hayakawa K., Read R. J., Irvin R. T. 2000; Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main-chain-dominated mode of receptor binding. J Mol Biol 299:1005–1017 [CrossRef]
    [Google Scholar]
  14. Hobbs M., Mattick J. S. 1993; Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10:233–243 [CrossRef]
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  16. Lee S. S., Ha J. K., Cheng K. 2000; Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl Environ Microbiol 66:3807–3813 [CrossRef]
    [Google Scholar]
  17. Lu H. M., Motley S. T., Lory S. 1997; Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion. Mol Microbiol 25:247–259 [CrossRef]
    [Google Scholar]
  18. Michel V., Lehoux I., Depret G., Anglade P., Labadie J., Hebraud M. 1997; The cold shock response of the psychrophilic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J Bacteriol 179:7331–7342
    [Google Scholar]
  19. Miron J., Ben-Ghedalia D., Morrison M. 2001a; Adhesion mechanisms of rumen cellulolytic bacteria. J Dairy Sci 84:1294–1309 [CrossRef]
    [Google Scholar]
  20. Miron J., Jacobovitch J., Bayer E. A., Lamed R., Morrison M., Ben-Ghedalia D. 2001b; Subcellular distribution of glycanases and related components in Ruminococcus albus SY3 and their role in cell adhesion to cellulose. J Appl Microbiol 91:677–685 [CrossRef]
    [Google Scholar]
  21. Morrison M., Miron J. 2000; Adhesion to cellulose by Ruminococcus albus : a combination of cellulosomes and Pil-proteins?. FEMS Microbiol Lett 185:109–115 [CrossRef]
    [Google Scholar]
  22. Mosoni P., Gaillard-Martinie B. 2001; Characterization of a spontaneous adhesion-defective mutant of Ruminococcus albus strain 20. Arch Microbiol 176:52–61 [CrossRef]
    [Google Scholar]
  23. Mosoni P., Fonty G., Gouet P. 1997; Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Curr Microbiol 35:44–47 [CrossRef]
    [Google Scholar]
  24. Nunn D. N., Lory S. 1992; Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proc Natl Acad Sci USA 89:47–51 [CrossRef]
    [Google Scholar]
  25. Ohara H., Karita S., Kimura T., Sakka K., Ohmiya K. 2000; Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus . Biosci Biotechnol Biochem 64:254–260 [CrossRef]
    [Google Scholar]
  26. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A. 1995; Structure of the fibre-forming protein pilin at 2·6 Å resolution. Nature 378:32–38 [CrossRef]
    [Google Scholar]
  27. Pegden R. S., Larson M. A., Grant R. J., Morrison M. 1998; Adherence of the Gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pil family of proteins. J Bacteriol 180:5921–5927
    [Google Scholar]
  28. Power P. M., Roddam L. F., Dieckelmann M., Srikhanta Y. N., Tan Y. C., Berrington A. W., Jennings M. P. 2000; Genetic characterization of pilin glycosylation in Neisseria meningitidis . Microbiology 146:967–979
    [Google Scholar]
  29. Rasmussen M. A., Hespell R. B., White B. A., Bothast R. J. 1988; Inhibitory effects of methylcellulose on cellulose degradation by Ruminococcus flavefaciens . Appl Env Microbiol 54:890–897
    [Google Scholar]
  30. Rudel T., Scheurerpflug I., Meyer T. F. 1995; Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 373:357–359 [CrossRef]
    [Google Scholar]
  31. Sauvonnet N., Vignon G., Pugsley A. P., Gounon P. 2000; Pilus formation and protein secretion by the same machinery in Escherichia coli . EMBO J 19:2221–2228 [CrossRef]
    [Google Scholar]
  32. Schagger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  33. Strom M. S., Nunn D., Lory S. 1991; Multiple roles of the pilus biogenesis protein pilD: involvement of pilD in excretion of enzymes from Pseudomonas aeruginosa . J Bacteriol 173:1175–1180
    [Google Scholar]
  34. Virji M., Saunders J. R., Sims G., Makepeace K., Maskell D., Ferguson D. J. 1993; Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10:1013–1028 [CrossRef]
    [Google Scholar]
  35. Weimer P. J., Waghorn G. C., Odt C. L., Mertens D. R. 1999; Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J Dairy Sci 82:122–134 [CrossRef]
    [Google Scholar]
  36. Whitchurch C. B., Alm R. A., Mattick J. S. 1996; The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa . Proc Natl Acad Sci USA 93:9839–9843 [CrossRef]
    [Google Scholar]
  37. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp 2.4.1–2.4.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
/content/journal/micro/10.1099/00221287-148-6-1871
Loading
/content/journal/micro/10.1099/00221287-148-6-1871
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error