1887

Abstract

BenM and CatM are distinct, but similar, LysR-type transcriptional regulators of the soil bacterium sp. strain ADP1. Together, the two regulators control the expression of at least 14 genes involved in the degradation of aromatic compounds via the catechol branch of the β-ketoadipate pathway. In these studies, BenM and CatM were each purified to homogeneity to test the possibility that they regulate the expression of two additional genes, and , that are adjacent to on the chromosome. Each regulator bound to a DNA fragment containing the promoter region. Additional transcriptional studies suggested that and are co-transcribed as an operon, and a site of transcription initiation was identified. Alignment of this initiation site with those of several CatM- and BenM-regulated genes revealed common regulatory motifs. Mutants lacking both CatM and BenM failed to activate transcription. The ability of each protein to regulate gene expression was inferred from strains lacking either CatM or BenM that were still capable of increasing expression in response to ,-muconate. This compound has previously been shown to induce all enzymes of the catechol branch of the β-ketoadipate pathway through a complex transcriptional circuit involving CatM and BenM. Thus, the regulated expression of the operon in concert with other genes of the regulon is consistent with the model that BenP, a putative outer-membrane porin, and BenK, an inner-membrane permease, transport aromatic compounds in strain ADP1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-4-1213
2002-04-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/4/1481213a.html?itemId=/content/journal/micro/10.1099/00221287-148-4-1213&mimeType=html&fmt=ahah

References

  1. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  2. Branden C., Tooze J. 1999; Introduction to Protein Structure, 2nd edn. New York: Garland Publishing;
    [Google Scholar]
  3. Brzostowicz P. C. 1997; Carbon-source dependent expression of the pobA gene needed for 4-hydroxybenzoate degradation in Acinetobacter sp. strain ADP1 MS thesis, University of Georgia;
    [Google Scholar]
  4. Bundy B. M. 2001; Transcriptional regulation of the benABCDE operon of Acinetobacter sp. strain ADP1: BenM-mediated synergistic induction in response to benzoate and cis,cis-muconate PhD thesis, University of Georgia;
    [Google Scholar]
  5. Coco W. M., Parsek M. R., Chakrabarty A. M. 1994; Purification of the LysR family regulator, ClcR, and its interaction with the Pseudomonas putida clcABD chlorocatechol operon promoter. J Bacteriol176:5530–5533
    [Google Scholar]
  6. Collier L. S. 2000; Transcriptional regulation of benzoate degradation by BenM and CatM in Acinetobacter sp. strain ADP1 PhD thesis, University of Georgia;
    [Google Scholar]
  7. Collier L. S., Nichols N. N., Neidle E. L. 1997; benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol179:5943–5946
    [Google Scholar]
  8. Collier L. S., Gaines G. L.III, Neidle E. L. 1998; Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol180:2493–2501
    [Google Scholar]
  9. Cosper N. J., Collier L. S., Clark T. J., Scott R. A., Neidle E. L. 2000; Mutations in catB , the gene encoding muconate cycloisomerase, activate transcription of the distal ben genes and contribute to a complex regulatory circuit in Acinetobacter sp. strain ADP1. J Bacteriol182:7044–7052[CrossRef]
    [Google Scholar]
  10. Cowles C. E., Nichols N. N., Harwood C. S. 2000; BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida . J Bacteriol182:6339–6346[CrossRef]
    [Google Scholar]
  11. DiMarco A. A., Averhoff B., Ornston L. N. 1993; Identification of the transcriptional activator pobR and characterization of its role in the expression of pobA , the structural gene for p -hydroxybenzoate hydroxylase in Acinetobacter calcoaceticus . J Bacteriol175:4499–4506
    [Google Scholar]
  12. Gaines G. L.III, Smith L., Neidle E. L. 1996; Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus . J Bacteriol178:6833–6841
    [Google Scholar]
  13. Gregg-Jolly L. A., Ornston L. N. 1990; Recovery of DNA from the Acinetobacter calcoaceticus chromosome by gap repair. J Bacteriol172:6169–6172
    [Google Scholar]
  14. Harwood C. S., Parales R. E. 1996; The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol50:553–590[CrossRef]
    [Google Scholar]
  15. Huang H., Jenateur D., Pattus F., Hancock R. E. W. 1995; Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD. Mol Microbiol16:931–941[CrossRef]
    [Google Scholar]
  16. Jones R. M., Williams P. A. 2001; areCBA is an operon in Acinetobacter sp. strain ADP1 and is controlled by AreR, a σ54-dependent regulator. J Bacteriol183:405–409[CrossRef]
    [Google Scholar]
  17. Jones R. M., Collier L. S., Neidle E. L., Williams P. A. 1999; areABC genes determine the catabolism of aryl esters in Acinetobacter sp. strain ADP1. J Bacteriol181:4568–4575
    [Google Scholar]
  18. Jones R. M., Pagmantidis V., Williams P. A. 2000; sal genes determining the catabolism of salicylate esters are part of a supraoperonic cluster of catabolic genes in Acinetobacter sp. strain ADP1. J Bacteriol182:2018–2025[CrossRef]
    [Google Scholar]
  19. Juni E., Janik A. 1969; Transformation of Acinetobacter calcoaceticus (Bacterium anitratum ). J Bacteriol98:281–288
    [Google Scholar]
  20. Keen T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene70:191–197[CrossRef]
    [Google Scholar]
  21. Koebnik R., Locher K. P., Van Gelder P. 2000; Structure and function of bacterial outer-membrane proteins: barrels in a nutshell. Mol Microbiol37:239–253[CrossRef]
    [Google Scholar]
  22. McFall S. M., Chugani S. A., Chakrabarty A. M. 1998; Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene223:257–267[CrossRef]
    [Google Scholar]
  23. Neidle E. L., Hartnett C., Ornston L. N. 1989; Characterization of Acinetobacter calcoaceticus catM , a repressor gene homologous in sequence to transcriptional activator genes. J Bacteriol171:5410–5421
    [Google Scholar]
  24. Nichols N. N., Harwood C. S. 1997; PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida . J Bacteriol179:5056–5061
    [Google Scholar]
  25. Nojiri H., Sekiguchi H., Maeda K., Urata M., Nakai S., Yoshida T., Habe H., Omori T. 2001; Genetic characterization and evolutionary inplications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol183:3663–3679[CrossRef]
    [Google Scholar]
  26. Ochs M. M., Bains M., Hancock R. E. W. 2000; Role of putative loops 2 and 3 in imipenem passage through the specific porin OprD of Pseudomonas aeruginosa . Antimicrob Agents Chemother44:1983–1985[CrossRef]
    [Google Scholar]
  27. Olivera E. R., Minambres B., Garcia B., Muniz C., Moreno M. A., Ferrandez A., Diaz E., Garcia J. L., Luengo J. M. 1998; Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA95:6419–6424[CrossRef]
    [Google Scholar]
  28. Parsek M. R., Shinabarger D. L., Rothmel R. K., Chakrabarty A. M. 1992; Roles of CatR and cis , cis -muconate in activation of the catBC operon,which is involved in benzoate degradation in Pseudomonas putida. J Bacteriol174:7798–7806
    [Google Scholar]
  29. Parsek M. R., Coco W. M., Chakrabarty A. M. 1994; Gel-shift assay and Dnase I footprinting analysis of transcriptional regulation of biodegradation genes. Methods Mol Genet3:273–290
    [Google Scholar]
  30. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene29:303–313[CrossRef]
    [Google Scholar]
  31. Romero-Arroyo C. E., Schell M. A., Gaines G. L.III, Neidle E. L. 1995; catM encodes a LysR-type transcriptional activator regulating catechol degradation in Acinetobacter calcoaceticus . J Bacteriol177:5891–5898
    [Google Scholar]
  32. Saier M. H. 2000; Families of proteins forming transmembrane channels. J Membr Biol175:165–180[CrossRef]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol47:597–626[CrossRef]
    [Google Scholar]
  35. Segura A., Bunz P. V., D’Argenio D. A., Ornston L. N. 1999; Genetic analysis of a chromosomal region containing vanA and vanB , genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter . J Bacteriol181:3494–3504
    [Google Scholar]
  36. Shanley M. S., Neidle E. L., Parales R. E., Ornston L. N. 1986; Cloning and expression of Acinetobacter calcoaceticus catBCDE genes in Pseudomonas putida and Escherichia coli . J Bacteriol165:557–563
    [Google Scholar]
  37. Tobiason D. M., Lenich A. G., Glasgow A. C. 1999; Multiple DNA binding activities of the novel site-specific recombinase, Piv, from Moraxella lacunata . J Biol Chem274:9698–9706[CrossRef]
    [Google Scholar]
  38. Trias J., Nikaido H. 1990; Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. J Biol Chem265:15680–15684
    [Google Scholar]
  39. Williams M. G., Rogers M. 1987; Expression of the arg genes of Escherichia coli during arginine limitation dependent upon stringent control of translation. J Bacteriol169:1644–1650
    [Google Scholar]
  40. Williams P. A., Shaw L. E. 1997; mucK , a gene in Acinetobacter calcoaceticus ADP1 (BD413) encodes the ability to grow on exogenous cis , cis -muconate as sole carbon source. J Bacteriol179:5935–5942
    [Google Scholar]
  41. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  42. Young D. M., Parke D., D’Argenio D. A., Smith M. A., Ornston L. N. 2001; Evolution of a catabolic pathway. ASM News67:362–369
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-4-1213
Loading
/content/journal/micro/10.1099/00221287-148-4-1213
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error