1887

Abstract

, a bacterium formerly referred to as ‘the micro-organism Z’ or ‘ Z’, belongs to the order , assigned to the family . The purpose of this study was to investigate the production of progeny in infected cells in comparison with the well-documented developmental cycle. It was found that replicating in Vero cells resembled the reticulate bodies of all known chlamydial species: in electron micrographs they were reticulated, homogeneously staining, and often caught in the process of binary division. These replicative forms were found in low abundance shortly after infection, but by 3 days post-infection they were the most prevalent particles in host cells. Electron-dense forms of began to appear on the third day post-infection, but quantitatively did not account for the high titre of infectivity in extracts from these host cells. These had both electron-dense and electron-lucent areas, a characteristic seen only in a few chlamydial species. infectivity did not appreciably change during the ensuing 12 days required for host cell lysis, despite an eightfold increase in the proportion of electron-dense bacteria over this time. The emergence of electron-dense bodies, increase in infectivity and host-cell lysis were not synchronized developmental events. This is a novel finding in spp. and suggests that will provide new perspectives in the mechanisms of chlamydial intracellular growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-735
2002-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480735a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-735&mimeType=html&fmt=ahah

References

  1. Barbour, A. G., Amano, K.-I., Hackstadt, T., Perry, L. & Caldwell, H. ( 1982; ). Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J Bacteriol 151, 420-428.
    [Google Scholar]
  2. Biberfeld, P. ( 1971; ). Cytological studies on blood lymphocytes activated by phytohemagglutinin in vitro. Acta Pathol Microbiol Scand 223, 7-8.
    [Google Scholar]
  3. Birtles, R. J., Rowbotham, T. J., Storey, C., Marrie, T. J. & Rauolt, D. ( 1997; ). Chlamydia-like obligate intracellular parasite of free-living amoebae. Lancet 349, 925-926.[CrossRef]
    [Google Scholar]
  4. Caldwell, H. D., Kromhout, J. & Schachter, J. ( 1981; ). Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun 31, 1161-1176.
    [Google Scholar]
  5. Everett, K. D. E., Bush, R. M. & Andersen, A. A. ( 1999; ). Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49, 415-440.[CrossRef]
    [Google Scholar]
  6. Friedman, M. G., Galil, A., Greenberg, S. & Kahane, S. ( 1999; ). Seroprevalence of IgG antibodies to the Chlamydia-like microorganism ‘Simkania Z’ by ELISA. Epidemiol Infect 122, 117-123.[CrossRef]
    [Google Scholar]
  7. Fritsche, T. R., Horn, M., Wagner, M., Herwig, R. P., Schleifer, K.-H. & Gautom, R. K. ( 2000; ). Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl Environ Microbiol 66, 2613-2619.[CrossRef]
    [Google Scholar]
  8. Glauert, A. M. ( 1975; ). Fixation, dehydration and embedding of biological specimens. In Practical Methods in Electron Microscopy , pp. 48. Edited by A. M. Glauert. Amsterdam:North Holland Publishing Company.
  9. Gonen, R., Shemer-Avni, Y., Csàngo, P. A., Sarov, B. & Friedman, M. G. ( 1993; ). Serum reactivity to Chlamydia trachomatis and C. pneumoniae antigens in patients with documented infection and in healthy children by microimmuno-fluorescence and immunoblotting techniques. APMIS 101, 719-726.[CrossRef]
    [Google Scholar]
  10. Heinzen, R. A., Hackstadt, T. & Samuel, J. E. ( 1999; ). Developmental biology of Coxiella burnetii. Trends Microbiol 7, 149-154.[CrossRef]
    [Google Scholar]
  11. Higashi, N. ( 1965; ). Electron microscopic studies on the mode of reproduction of trachoma virus and psittacosis virus in cell cultures. Exp Mol Pathol 4, 24-39.[CrossRef]
    [Google Scholar]
  12. Higashi, N., Tamura, A. & Iwanaga, M. ( 1962; ). Developmental cycle and reproductive mechanism of the meningopneumonitis virus in strain L cells. Ann N Y Acad Sci 98, 100-121.
    [Google Scholar]
  13. Hondinka, R. L. & Wyrick, P. B. ( 1986; ). Ultrastructural study of mode of entry of Chlamydia psittaci into L-929 cells. Infect Immun 54, 855-863.
    [Google Scholar]
  14. Howe, D. & Mallavia, L. P. ( 2000; ). Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect Immun 68, 3815-3821.[CrossRef]
    [Google Scholar]
  15. Kahane, S., Gonen, R., Sayada, C., Elion, J. & Friedman, M. G. ( 1993; ). Description and partial characterization of a new Chlamydia-like microorganism. FEMS Microbiol Lett 109, 329-334.[CrossRef]
    [Google Scholar]
  16. Kahane, S., Greenberg, D., Friedman, M. G., Haikin, H. & Dagan, R. ( 1998; ). High prevalence of ‘Simkania Z’, a novel Chlamydia-like bacterium, in infants with acute bronchiolitis. J Infect Dis 177, 1425-1429.[CrossRef]
    [Google Scholar]
  17. Kahane, S., Everett, K. D. E., Kimmel, N. & Friedman, M. G. ( 1999; ). Simkania negevensis strain ZT: growth, antigenic and genome characteristics. Int J Syst Bacteriol 49, 815-820.[CrossRef]
    [Google Scholar]
  18. Lieberman, D., Kahane, S., Lieberman, D. & Friedman, M. G. ( 1997; ). Pneumonia with serological evidence of acute infection with the Chlamydia-like microorganism ‘Z’. Am J Respir Crit Care Med 156, 578-582.[CrossRef]
    [Google Scholar]
  19. Moulder, J. W. ( 1985; ). Comparative biology of intracellular parasitism. Microbiol Rev 49, 298-337.
    [Google Scholar]
  20. Ossewarde, J. M. & Meijer, A. ( 1999; ). Molecular evidence for the existence of additional members of the order Chlamydiales. Microbiology 145, 411-417.[CrossRef]
    [Google Scholar]
  21. Rake, G. W. ( 1957; ). Family Chlamydiaceae fam. nov. In Bergey’s Manual of Determinative Bacteriology , pp. 957-968. Edited by R. S. Breed, E. G. D. Murray & N. R. Smith. Baltimore:Williams & Wilkins.
  22. Ridderhof, J. C. & Barnes, R. C. ( 1989; ). Fusion of inclusions following superinfection of HeLa cells by two serovars of Chlamydia trachomatis. Infect Immun 57, 3189-3193.
    [Google Scholar]
  23. Schachter, J. ( 1999; ). Infection and disease epidemiology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity , pp. 139-169. Edited by R. S. Stephens. Washington, DC:American Society for Microbiology.
  24. Tamura, A., Matsomoto, A. & Higashi, N. ( 1967; ). Purification and chemical composition of reticulate bodies of the meningopneumonitis organisms. J Bacteriol 93, 2003-2008.
    [Google Scholar]
  25. Wiebe, M. E., Burton, P. R. & Shankel, D. M. ( 1972; ). Isolation and characterization of cell types of Coxiella burnetii phase I. J Bacteriol 110, 368-377.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-735
Loading
/content/journal/micro/10.1099/00221287-148-3-735
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error