1887

Abstract

The microaerophilic flagellated protist , the commonest protozoal agent of intestinal infections worldwide, is of uncertain phylogeny, but is usually regarded as the earliest branching of the eukaryotic clades. Under strictly anaerobic conditions, a mass spectrometric investigation of gas production indicated a low level of generation of dihydrogen (2 nmol min per 10 organisms), about 10-fold lower than that in under similar conditions. Hydrogen evolution was O sensitive, and inhibited by 100 μM metronidazole. Fluorescent labelling of cells using monoclonal antibodies to typical hydrogenosomal enzymes from (malate enzyme, and succinyl-CoA synthetase α and β subunits), and to the large-granule fraction (hydrogenosome-enriched, also from ) gave no discrete localization of epitopes. Cell-free extracts prepared under anaerobic conditions showed the presence of a CO-sensitive hydrogenase activity. This first report of hydrogen production in a eukaryote with no recognizable hydrogenosomes raises further questions about the early branching status of ; the physiological characterization of its hydrogenase, and its recently elucidated gene sequence, will aid further phylogenetic investigations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-3-727
2002-03-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/3/1480727a.html?itemId=/content/journal/micro/10.1099/00221287-148-3-727&mimeType=html&fmt=ahah

References

  1. Adam, R. D. ( 1991; ). The biology of Giardia spp. Microbiol Rev 55, 706-732.
    [Google Scholar]
  2. Adam, R. D. ( 2000; ). The Giardia genome project. Int J Parasitol 30, 475-484.[CrossRef]
    [Google Scholar]
  3. Benchimol, M., Elias, C. A. & DeSouza, W. ( 1982; ). Tritrichomonas foetus: ultrastructural localisation of calcium in the plasmamembrane and in the hydrogenosome. Exp Parasitol 54, 277-284.[CrossRef]
    [Google Scholar]
  4. Biagini, G. A., Hayes, A. J., Suller, M. T. E., Winters, C., Finlay, B. J. & Lloyd, D. ( 1997a; ). Hydrogenosomes of Metopus contortus physiologically resemble mitochondria. Microbiology 143, 1623-1629.[CrossRef]
    [Google Scholar]
  5. Biagini, G. A., van der Giesen, M., Hill, B., Winters, C. & Lloyd, D. ( 1997b; ). Ca2+ accumulation in the hydrogenosomes of Neocallimastix frontalis L2, a mitochondria-like physiological role. FEMS Microbiol Lett 149, 227-232.[CrossRef]
    [Google Scholar]
  6. Biagini, G. A., Finlay, B. & Lloyd, D. ( 1997c; ). Evolution of the hydrogenosome. FEMS Microbiol Lett 153, 133-140.
    [Google Scholar]
  7. Brown, D. M., Upcroft, J. A., Edwards, M. R. & Upcroft, P. ( 1998; ). Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis. Int J Parasitol 28, 149-164.[CrossRef]
    [Google Scholar]
  8. Brugerolle, G., Bricheux, G. & Coffe, G. ( 2000; ). Immunolocalization of two hydrogenosomal enzymes of Trichomonas vaginalis. Parasitol Res 86, 30-35.[CrossRef]
    [Google Scholar]
  9. Cammack, R., Hall, D. O. & Rao, K. K. ( 1985; ). Hydrogenases: structure and applications in hydrogen production. In Microbial Gas Metabolism, , pp. 75-102. Edited by R. K. Poole & C. S. Dow. London:Academic Press.
  10. Chapman, A., Hann, A. O., Linstead, D. & Lloyd, D. ( 1985; ). Dispersive X-ray microanalysis of membrane associated inclusions in hydrogenosomes isolated from Trichomonas vaginalis. J Gen Microbiol 131, 2933-2939.
    [Google Scholar]
  11. Diamond, L. S. ( 1957; ). The establishment of various trichomonads in animals and man in axenic culture. J Parasitol 43, 488-490.
    [Google Scholar]
  12. Edwards, M. R., Gilroy, F. V., Jimenez, B. M. & O’Sullivan, W. J. ( 1989; ). Alanine is a major end product of metabolism by Giardia lamblia: a proton nuclear magnetic resonance study. Mol Biochem Parasitol 37, 19-26.[CrossRef]
    [Google Scholar]
  13. Ellis, J. E., McIntyre, P. S., Saleh, M., Williams, A. G. & Lloyd, D. ( 1991a; ). Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Polyplastron multivesciculatum. Appl Environ Microbiol 57, 1400-1407.
    [Google Scholar]
  14. Ellis, J. E., McIntyre, P. S., Saleh, M., Williams, A. G. & Lloyd, D. ( 1991b; ). Influence of CO2 and low concentrations of O2 on fermentative metabolism of the rumen ciliate Dasytricha ruminantium. J Gen Microbiol 147, 1409-1417.
    [Google Scholar]
  15. Ellis, J. E., McIntyre, P. S., Saleh, M., Williams, A. G. & Lloyd, D. ( 1991c; ). The influence of minimal concentrations of O2 on the fermentative metabolism of the rumen entodimiomorphid ciliate, Eudiplodinium maggii. Curr Microbiol 23, 245-251.[CrossRef]
    [Google Scholar]
  16. Ellis, J. E., Cole, D. & Lloyd, D. ( 1992; ). Influence of oxygen on the fermentative metabolism of metronidazole-sensitive and resistant strains of Trichomonas vaginalis. Mol Biochem Parasitol 56, 79-88.[CrossRef]
    [Google Scholar]
  17. Ellis, J. E., Williams, R., Cole, D., Cammack, R. & Lloyd, D. ( 1993; ). Electron transport components of the parasitic protozoon, Giardia lamblia. FEBS Lett 325, 196-200.[CrossRef]
    [Google Scholar]
  18. Embley, T. M. & Hirt, R. P. ( 1998; ). Early branching eukaryotes? Curr Opin Genet Dev 8, 624-629.[CrossRef]
    [Google Scholar]
  19. Fenchel, T. & Finlay, B. J. ( 1992; ). Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157, 475-480.
    [Google Scholar]
  20. Fenchel, T. & Finlay, B. J. (1995). Ecology and Evolution in Anoxic Worlds. Oxford: Oxford University Press.
  21. Finlay, B. J. & Fenchel, T. ( 1989; ). Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65, 311-314.[CrossRef]
    [Google Scholar]
  22. Gupta, R. S. & Golding, G. B. ( 1996; ). The origin of the eukaryotic cell. Trends Biochem Sci 21, 166-171.[CrossRef]
    [Google Scholar]
  23. Happe, T., Mosler, B. & Naber, J. D. ( 1994; ). Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222, 769-774.[CrossRef]
    [Google Scholar]
  24. Hillman, K., Lloyd, D., Scott, R. I. & Williams, A. G. ( 1985; ). The effect of O2 on H2 production by rumen holotrich protozoa as determined by membrane inlet mass spectrometry. In Gas Metabolism, , pp. 271-277. Edited by R. K. Poole & C. S. Dow. London:Academic Press.
  25. Horner, D., Hirt, R. P., Kilvington, S., Lloyd, D. & Embley, T. M. ( 1996; ). Molecular data suggest an earlier acquisition of the mitochondrial endosymbiont. Proc R Soc B Biol Sci 263, 1053-1059.[CrossRef]
    [Google Scholar]
  26. Horner, D. S., Foster, P. G. & Embley, T. M. ( 2000; ). Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17, 1695-1709.[CrossRef]
    [Google Scholar]
  27. Humphreys, M., Ralphs, J., Durrant, L. & Lloyd, D. ( 1994; ). Hydrogenosomes in trichomonads are Ca2+-stores and have a transmembrane electrochemical potential. Biochem Soc Trans 22, 324S.
    [Google Scholar]
  28. Humphreys, M., Ralphs, J., Durrant, L. & Lloyd, D. ( 1998; ). Confocal laser scanning microscopy of trichomonad hydrogenosomes store calcium and show a membrane potential. Eur J Protistol 34, 356-362.[CrossRef]
    [Google Scholar]
  29. Keister, D. B. ( 1983; ). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77, 487-488.[CrossRef]
    [Google Scholar]
  30. Lake, J. A. ( 1994; ). Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci USA 91, 1455-1459.[CrossRef]
    [Google Scholar]
  31. Leipe, D. D., Gunderson, J. H., Nerad, T. A. & Sogin, M. L. ( 1993; ). Small subunit ribosomal RNA of Hexamita inflata and the quest for the first branch in the eukaryotic tree. Mol Biochem Parasitol 59, 41-48.[CrossRef]
    [Google Scholar]
  32. Lindmark, D. G. & Müller, M. ( 1973; ). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus and its role in pyruvate metabolism. J Biol Chem 248, 7724-7728.
    [Google Scholar]
  33. Lloyd, D. (1974). The Mitochondria of Microrganisms. London: Academic Press.
  34. Lloyd, D. & Scott, R. I. ( 1982; ). Direct measurement of dissolved gases using membrane inlet mass spectrometry. J Microbiol Methods 1, 313-320.
    [Google Scholar]
  35. Lloyd, D. & Williams, A. G. ( 1993; ). Biological activities of symbiotic and parasitic protists in low O2 environments. Adv Microb Ecol 13, 211-262.
    [Google Scholar]
  36. Lloyd, D., Williams, A. G., Yarlett, N. & Hillman, K. (1983). Similarities between rumen ciliates and trichomonads: both possess hydrogenosomes. Abstr Int Soc Evol Protistol, 5th Meeting, Banyuls-sur-Mer, abstract 26.
  37. Lloyd, D., Ellis, J. E., Hillman, K. & Williams, A. G. ( 1992; ). Membrane inlet mass spectrometry: probing the rumen ecosystem. J Appl Bacteriol Symp Suppl 73, 1555-1635.
    [Google Scholar]
  38. Lloyd, D., Harris, J. C., Biagini, G. A. & 8 other authors (2002). Oxygen homeodynamics in Giardia. In Giardia, a Cosmopolitan Parasite, edited by P. Wallis. Wallingford: CAB International (in press).
  39. López-Garcia, P. & Moreira, D. ( 1999; ). Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24, 88-93.[CrossRef]
    [Google Scholar]
  40. Lundsgaard, J. & Degn, H. ( 1973; ). Digital regulation of gas flow rates and composition of gas mixtures. IEEE Trans Biomed Eng 20, 384-387.
    [Google Scholar]
  41. Madigan, M. T., Martinko, J. M. & Parker, J. (2000). Biology of Microorganisms, 9th edn. Upper Saddle River, NJ: Prentice Hall.
  42. Paget, T. A. & Lloyd, D. ( 1990; ). Trichomonas vaginalis requires traces of oxygen and high concentrations of carbon dioxide for growth. Mol Biochem Parasitol 41, 65-72.[CrossRef]
    [Google Scholar]
  43. Paget, T. A., Rayner, M. H., Shipp, D. W. E. & Lloyd, D. ( 1990; ). Giardia lamblia produces alanine anaerobically but not in the presence of O2. Mol Biochem Parasitol 42, 63-68.[CrossRef]
    [Google Scholar]
  44. Paget, T. A., Kelly, M. L., Jarroll, E. L., Lindmark, D. G. & Lloyd, D. ( 1993; ). The effects of oxygen on fermentation in Giardia lamblia. Mol Biochem Parasitol 57, 65-72.[CrossRef]
    [Google Scholar]
  45. Rees, E. M. R., Lloyd, D. & Williams, A. G. ( 1998; ). The effects of differing concentrations of CO2 and O2 on the fermentative metabolisms of the rumen fungi Neocallimastix patriciarum and Neocallimastix frontalis L2. Can J Microbiol 44, 819-824.[CrossRef]
    [Google Scholar]
  46. Roger, A. J., Clark, C. G. & Doolittle, W. F. ( 1998; ). A possible mitochondrial gene in the early branching amitochondriate protist Trichomonas vaginalis. Proc Natl Acad Sci USA 95, 229-234.[CrossRef]
    [Google Scholar]
  47. Rosenthal, B., Zhiming, M., Caplivski, D., Ghosh, S., de la Vega, H., Graf, T. & Samuelson, J. ( 1997; ). Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate parasite Entamoeba histolytica. J Bacteriol 179, 3736-3745.
    [Google Scholar]
  48. Schnackenberg, J., Schulz, R. & Senger, H. ( 1993; ). Characterization and purification of a hydrogenase for the green alga Scenedesmus obliquus. FEBS Lett 327, 21-24.[CrossRef]
    [Google Scholar]
  49. Sogin, M. L. ( 1991; ). Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1, 457-463.[CrossRef]
    [Google Scholar]
  50. Soltys, B. J. & Gupta, R. S. ( 1994; ). Presence and cellular distributions of a 60 kDa protein related to mitochondrial HSP-60 in Giardia lamblia. J Parasitol 80, 580-590.[CrossRef]
    [Google Scholar]
  51. Wilhelm, E., Battino, R. & Wilcock, R. J. ( 1977; ). Low pressure solubilities of gases in liquid waters. Chem Rev 77, 219-362.[CrossRef]
    [Google Scholar]
  52. Yarlett, N., Hann, A. C., Lloyd, D. & Williams, A. G. ( 1981; ). Hydrogenosomes in the rumen protozoon Dasytricha ruminantium. Biochem J 200, 365-372.
    [Google Scholar]
  53. Yarlett, N., Lloyd, D. & Williams, A. G. ( 1982; ). Respiration of the rumen ciliate Dastricha ruminantium Schuberg. Biochem J 206, 259-266.
    [Google Scholar]
  54. Yarlett, N., Hann, A. C., Lloyd, D. & Williams, A. G. ( 1983a; ). Hydrogenosomes in a mixed isolate of Isotricha prostoma and Isotricha intestinalis from ovine rumen contents. Comp Biochem Physiol 74B, 357-364.
    [Google Scholar]
  55. Yarlett, N., Scott, R. I., Williams, A. G. & Lloyd, D. ( 1983b; ). A note on the effects of oxygen on hydrogen production by the rumen protozoon Dastricha ruminantium Schuberg. J Appl Bacteriol 55, 359-361.[CrossRef]
    [Google Scholar]
  56. Yarlett, N., Coleman, G. S., Williams, A. G. & Lloyd, D. ( 1984; ). Hydrogenosomes in known species of rumen entodiniomorphid protozoa. FEMS Microbiol Lett 21, 15-19.[CrossRef]
    [Google Scholar]
  57. Yarlett, N., Orpin, C. G., Munn, E. A., Yarlett, N. C. & Greenwood, C. A. ( 1986; ). Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236, 729-739.
    [Google Scholar]
  58. Yarlett, N., Rowlands, C., Yarlett, N. C., Evans, J. C. & Lloyd, D. ( 1987; ). Respiration in the hydrogenosome-containing fungus Neocallimastix patriciarum. Arch Microbiol 148, 25-28.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-3-727
Loading
/content/journal/micro/10.1099/00221287-148-3-727
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error