1887

Abstract

Bacterial accommodation to moderate concentrations of cadmium is accompanied by transient activation of general stress proteins as well as a sustained induction of other proteins of hitherto unknown functions. One of the latter proteins was previously identified as the product of the ORF. The ORF encodes 216 aa residues (the YodA protein) and the increased synthesis of YodA during cadmium stress was found probably to be a result of transcriptional activation from one single promoter upstream of the structural gene. Analysis of a transcriptional gene fusion, PZ, demonstrated that basal expression of is low during exponential growth and expression is increased greater than 50-fold by addition of cadmium to growing cells. However, challenging cells with additional metals such as zinc, copper, cobalt and nickel did not increase the level of expression. In addition, hydrogen peroxide also increased expression whereas the superoxide-generating agent paraquat failed to do so. Surprisingly, cadmium-induced transcription of is dependent on and , but independent of . Moreover, a double mutation abolished induction of during cadmium exposure but ppGpp is not sufficient to induce since expression of the gene is not elevated during stationary phase. After 45 min of cadmium exposure the YodA protein was primarily detected in the cytoplasmic fraction but was later (150 min) found in both the cytoplasmic and periplasmic compartments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-12-3801
2002-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/12/1483801a.html?itemId=/content/journal/micro/10.1099/00221287-148-12-3801&mimeType=html&fmt=ahah

References

  1. Albertson, N. H. & Nyström, T. ( 1994; ). Effects of starvation for exogenous carbon on functional mRNA stability and the rate of peptide chain elongation in Escherichia coli. FEMS Microbiol Lett 117, 181-188.[CrossRef]
    [Google Scholar]
  2. Aoyama, T. & Takanami, M. ( 1985; ). Essential structure of E. coli promoter. II. Effect of the sequence around the RNA start point on promoter function. Nucleic Acids Res 13, 4085-4096.[CrossRef]
    [Google Scholar]
  3. Azakami, H., Yamashita, M., Roh, J. H., Suzuki, H., Kumagai, H. & Murooka, Y. ( 1994; ). Nucleotide sequence of the gene for monoamine oxidase (maoA) from Escherichia coli. J Ferment Bioeng 77, 315-319.[CrossRef]
    [Google Scholar]
  4. Binet, M. R. & Poole, R. K. ( 2000; ). Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal-transporting P-type ATPase in Escherichia coli. FEBS Lett 473, 67-70.[CrossRef]
    [Google Scholar]
  5. Brocklehurst, K. R., Hobman, J. L., Lawley, B., Blank, L., Marshall, S. J., Brown, N. L. & Morby, A. P. ( 1999; ). ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31, 893-902.[CrossRef]
    [Google Scholar]
  6. Dintilhac, A. & Claverys, J.-P. ( 1997; ). The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae, encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res Microbiol 148, 119-131.[CrossRef]
    [Google Scholar]
  7. Dintilhac, A., Alloing, G., Granadel, C. & Claverys, J.-P. ( 1997; ). Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25, 727-739.[CrossRef]
    [Google Scholar]
  8. Farris, M. W. ( 1991; ). Cadmium toxicity: unique cytoprotective properties of alpha tocopheryl succinate in hepatocytes. Toxicology 69, 63-77.[CrossRef]
    [Google Scholar]
  9. Ferianc, P., Farewell, A. & Nyström, T. ( 1998; ). The cadmium-stress stimulon of Escherichia coli K-12. Microbiology 144, 1045-1050.[CrossRef]
    [Google Scholar]
  10. Ferianc, P., Pu k rov , A., Godo ı́ kov , J., Polek, B. & T th, D. ( 2000; ). The effect of cadmium on culturability, macromolecule synthesis and protein degradation in a marine Vibrio sp. Biologia 55, 653–659.
    [Google Scholar]
  11. Foster, J. W. & Hall, H. K. ( 1992; ). Effect of Salmonella typhimurium ferric uptake regulator (fur) mutations on iron- and pH-regulated protein synthesis. J Bacteriol 174, 4317-4323.
    [Google Scholar]
  12. Gruber, A. & Zingales, B. ( 1995; ). Alternative method to remove antibacterial antibodies from antisera used for screening of expression libraries. Biotechniques 19, 28-30.
    [Google Scholar]
  13. Harley, C. B. & Reynolds, R. P. ( 1987; ). Analysis of E. coli promoter sequences. Nucleic Acids Res 15, 2343-2361.[CrossRef]
    [Google Scholar]
  14. Heltzel, A., Lee, I. W., Totis, P. A. & Summers, A. O. ( 1990; ). Activator-dependent preinduction binding of sigma-70 RNA polymerase at the metal-regulated mer promoter. Biochemistry 29, 9572-9584.[CrossRef]
    [Google Scholar]
  15. Kormanec, J. ( 2001; ). Analyzing the developmental expression of sigma factors with S1-nuclease mapping. In Nuclease Methods and Protocols: Methods in Molecular Biology , pp. 481-494. Edited by C. H. Chein. Totowa, NJ:Humana Press.
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  17. Laušová, A., Ferianc, P. & Polek, B. ( 1999; ). The effect of different oxidative challenge on growth and stress protein induction in Escherichia coli. Biologia 54, 649-660.
    [Google Scholar]
  18. Lee, S.-W., Glickmann, E. & Cooksey, D. A. ( 2001; ). Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67, 1437-1444.[CrossRef]
    [Google Scholar]
  19. Linn, T. & St Pierre, R. ( 1990; ). Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ. J Bacteriol 172, 1077-1084.
    [Google Scholar]
  20. Lund, P. A., Ford, S. J. & Brown, N. L. ( 1986; ). Transcriptional regulation of the mercury-resistance genes of transposon Tn501. J Gen Microbiol 132, 465-480.
    [Google Scholar]
  21. Manca, D., Ricard, A. C., Trottier, B. & Chevalier, G. ( 1991; ). Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology 67, 303-323.[CrossRef]
    [Google Scholar]
  22. Maxam, A. M. & Gilbert, W. ( 1980; ). Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol 65, 499-560.
    [Google Scholar]
  23. Miller, J. (1972). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Mitra, R., Gray, R., Chin, B. & Bernstein, A. ( 1975; ). Molecular mechanisms of accommodation in Escherichia coli to toxic levels of Cd2+. J Bacteriol 121, 1180-1188.
    [Google Scholar]
  25. Morozzi, G., Cenci, G., Scardazza, F. & Pitzurra, M. ( 1986; ). Cadmium uptake by growing cells of Gram-positive and Gram-negative bacteria. Microbios 48, 27-35.
    [Google Scholar]
  26. Niederhoffer, E. C., Naranjo, C. M., Bradley, K. L. & Fee, J. A. ( 1990; ). Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J Bacteriol 172, 1930-1938.
    [Google Scholar]
  27. Nyström, T. ( 1994; ). Role of guanosine tetraphosphate in gene expression and the survival of glucose or seryl-tRNA starved cells of Escherichia coli K-12. Mol Gen Genet 245, 355-362.[CrossRef]
    [Google Scholar]
  28. O’Farrell, P. H. ( 1975; ). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007-4021.
    [Google Scholar]
  29. Okinaka, R. T., Cloud, K., Hampton, O. & 12 other authors ( 1999; ). Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181, 6509–6515.
    [Google Scholar]
  30. Pedersen, S., Reeh, S. V., Parker, J., Watson, R. J., Friesen, J. D. & Fill, N. P. ( 1976; ). Analysis of the proteins synthesized in ultraviolet light-irradiated Escherichia coli following infection with the bacteriophage λdrifd18 a λdfus-3. Mol Gen Genet 144, 339-344.[CrossRef]
    [Google Scholar]
  31. Post, L. E., Arfsen, A. E., Davis, G. R. & Nomura, M. ( 1980; ). DNA sequence of the promoter region for the alpha ribosomal protein operon in Escherichia coli. J Biol Chem 255, 4653-4659.
    [Google Scholar]
  32. Puškárová, A., Janeček, Š., Ferianc, P. & Polek, B. ( 2001; ). Putative Cd-stress proteins YodA, YrpE and pXO1-130 share sequence similarity with adhesin AdcA. Biologia 56, 337-339.
    [Google Scholar]
  33. Rech, S., Wolin, Ch. & Gunsalus, P. ( 1996; ). Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli. J Biol Chem 271, 2557-2562.[CrossRef]
    [Google Scholar]
  34. Rensing, C., Mitra, B. & Rosen, B. P. ( 1997; ). The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94, 14326-14331.[CrossRef]
    [Google Scholar]
  35. Rensing, C., Ghosh, M. & Rosen, B. P. ( 1999; ). Families of soft-metal-ion-transporting ATPases. J Bacteriol 181, 5891-5897.
    [Google Scholar]
  36. Rensing, C., Fan, B., Sharma, R., Mitra, B. & Rosen, B. P. ( 2000; ). CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci USA 97, 652-656.[CrossRef]
    [Google Scholar]
  37. Reuven, B. & Ron, E. Z. ( 1998; ). An Escherichia coli gene responsive to heavy metals. FEMS Microbiol Lett 167, 107-111.[CrossRef]
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Silver, S. ( 1996; ). Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50, 753-789.[CrossRef]
    [Google Scholar]
  40. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85-96.[CrossRef]
    [Google Scholar]
  41. Sorokin, A., Bolotin, A., Purnelle, B., Hilbert, H., Lauber, J., Dusterhoft, A. & Ehrlich, S. D. ( 1997; ). Sequence of the Bacillus subtilis genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ. Microbiology 143, 2939-2943.[CrossRef]
    [Google Scholar]
  42. Stohs, S. J. & Bagchi, D. ( 1994; ). Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18, 321-336.
    [Google Scholar]
  43. Stojiljkovic, I., Bäumer, A. J. & Hantke, K. ( 1994; ). Fur regulon in Gram-negative bacteria. J Mol Biol 236, 531-545.[CrossRef]
    [Google Scholar]
  44. Storz, G., Tartaglia, L. A. & Ames, B. N. ( 1990; ). Transcriptional regulator of oxidative stress-inducible genes: direct activation by oxidation. Science 248, 189-194.[CrossRef]
    [Google Scholar]
  45. Sugino, H., Sasaki, M., Azakami, H., Yamashita, M. & Murooka, Y. ( 1992; ). A monoamine-regulated Klebsiella aerogenes operon containing the monoamine oxidase structural gene (maoA) and the maoC gene. J Bacteriol 174, 2485-2492.
    [Google Scholar]
  46. Tardat, B. & Touati, D. ( 1991; ). Two global regulators repress the anaerobic expression of MnSOD in E. coli: fur and arcA. Mol Microbiol 5, 455-465.[CrossRef]
    [Google Scholar]
  47. VanBogelen, R. A. & Neidhardt, F. C. ( 1990; ). Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87, 5589-5593.[CrossRef]
    [Google Scholar]
  48. VanBogelen, R. A., Kelley, P. M. & Neidhardt, F. C. ( 1987; ). Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J Bacteriol 169, 26-32.
    [Google Scholar]
  49. VanBogelen, R. A., Abshire, K. Z., Pertsemlidis, A., Clark, R. L. & Neidhardt, F. C. ( 1996; ). Gene-protein database of Escherichia coli K-12, edition 6. In Escherichia coli and Salmonella: Cellular and Molecular Biology , pp. 2067-2117. Edited by F. C. Neidhardt. Washington, DC:American Society for Microbiology.
  50. Xiao, H., Kalman, M., Ikehara, K., Zemel, S., Glaser, G. & Cashel, M. ( 1991; ). Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266, 5980-5990.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-12-3801
Loading
/content/journal/micro/10.1099/00221287-148-12-3801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error