1887

Abstract

α-toxin, which is one of the main agents involved in the development of gas gangrene, stimulates production in neutrophils. Exposure of rabbit neutrophils to the α-toxin induced firm adhesion of the cells to fibrinogen and fibronectin. Incubation of rabbit neutrophils and neutrophil lysates with α-toxin led to the production of diacylglycerol (DG) and L-α-phosphatidic acid (PA), respectively. The toxin-induced DG and PA formation preceded the toxin-induced adhesion of the neutrophils to fibrinogen and fibronectin, and the production of . Pertussis toxin inhibited the α-toxin-induced formation of PA, the adhesion of the neutrophils to fibrinogen and production. GTPγS stimulated the events induced by the α-toxin, whereas GDPβS inhibited them. The α-toxin stimulated phosphorylation of a protein with a molecular mass of about 40 kDa. In addition, treatment of the cells with 1-oleoyl-2-acetyl--glycerol (OAG) and phorbol-12,13-dibutyrate (PDBu) stimulated cell adhesion, production of and phosphorylation of the 40 kDa protein, but had no effect on the formation of PA. The events induced by the presence of OAG and PDBu were not inhibited by pertussis toxin. Protein kinase C inhibitors, H-7, staurosporine and chelerythrine, blocked α-toxin-induced adhesion, production of and phosphorylation of the 40 kDa protein. These observations suggested that α-toxin-stimulated adhesion to the matrix and production were due to the formation of DG, through activation of phospholipid metabolism by a pertussis-toxin-sensitive GTP-binding protein, followed by activation of protein kinase C by DG.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-1-237
2002-01-01
2020-11-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/1/1480237a.html?itemId=/content/journal/micro/10.1099/00221287-148-1-237&mimeType=html&fmt=ahah

References

  1. Albelda S. M., Smith C. W., Ward P. A.. 1994; Adhesion molecules and inflammatory injury. FASEB J8:504–512
    [Google Scholar]
  2. Awad M. M., Bryant A. E., Stevens D. L., Rood J. I.. 1995; Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens -mediated gas gangrene. Mol Microbiol5:191–202
    [Google Scholar]
  3. Babior B. M.. 1999; NADPH oxidase: an update. Blood93:1464–1476
    [Google Scholar]
  4. Bhakdi S., Tranum-Jensen J.. 1988; Damage to cell membranes by pore-forming bacterial cytolysins. Prog Allergy40:1–43
    [Google Scholar]
  5. Bianca V. D., Dusi S., Bianchini E., Dal Pra I., Rossi F.. 1999; β-Amyloid activates the \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(O_{2}^{{-}}\) \end{document} forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in disease. J Biol Chem274:15493–15499[CrossRef]
    [Google Scholar]
  6. Bryant A. E., Stevens D. L.. 1996; Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells. Infect Immun64:358–362
    [Google Scholar]
  7. Bryant A. E., Chen R. Y., Nagata Y., Wang Y., Lee C. H., Finegold S., Guth P. H., Stevens D. L.. 2000a; Clostridial gas gangrene. I. Cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of Clostridium perfringens . J Infect Dis182:799–807[CrossRef]
    [Google Scholar]
  8. Bryant A. E., Chen R. Y., Nagata Y., Wang Y., Lee C. H., Finegold S., Guth P. H., Stevens D. L.. 2000b; Clostridial gas gangrene. II. Phospholipase C-induced activation of platelet gpIIbIIIa mediates vascular occlusion and myonecrosis in Clostridium perfringens gas gangrene. J Infect Dis182:808–815[CrossRef]
    [Google Scholar]
  9. Bunting M., Lorant D. E., Bryant A. E., Zimmerman G. A., McIntyre T. M., Stevens D. L., Prescott S. M.. 1997; Alpha toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells. J Clin Invest100:565–574[CrossRef]
    [Google Scholar]
  10. de Chaffoy de Courcelles D. C., Roevens P., Van Belle H.. 1985; R59022, a diacylglycerol kinase inhibitor. Its effect on diacylglycerol and thrombin-induced C kinase activation in the intact platelet. J Biol Chem260:15762–15770
    [Google Scholar]
  11. Ellemor D. M., Baird R. N., Awad M. M., Boyd R. L., Rood J. I., Emmins J. J.. 1999; Use of genetically manipulated strains of Clostridium perfringens reveals that both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene. Infect Immun67:4902–4907
    [Google Scholar]
  12. Fuchs A., Bouin A. P., Rabilloud T., Vignais P. V.. 1997; The 40-kDa component of the phagocyte NADPH oxidase (p40phox) is phosphorylated during activation in differentiated HL60 cells. Eur J Biochem249:531–539[CrossRef]
    [Google Scholar]
  13. Fujii Y., Sakurai J.. 1989; Contraction of the rat isolated aorta caused by Clostridium perfringens alpha toxin (phospholipase C): evidence for the involvement of arachidonic acid metabolism. Br J Pharmacol97:119–124[CrossRef]
    [Google Scholar]
  14. Fujii Y., Nomura S., Oshita Y., Sakurai J.. 1986; Excitatory effect of Clostridium perfringens alpha toxin on the rat isolated aorta. Br J Pharmacol88:531–539[CrossRef]
    [Google Scholar]
  15. Grzeskowiak M., Della Bianca V., De Togni P., Papini E., Rossi F.. 1985; Independence with respect to Ca2+ changes of the neutrophil respiratory and secretory response to exogenous phospholipase C and possible involvement of diacylglycerol and protein kinase C. Biochim Biophys Acta844:81–90[CrossRef]
    [Google Scholar]
  16. Hayakawa T., Suzuki K., Suzuki S., Andrews P. C., Babior B. M.. 1986; A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease. J Biol Chem261:9109–9115
    [Google Scholar]
  17. Henriksen E. J., Rodnick K. J., Holloszy J. O.. 1989; Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. Evaluation of the regulatory roles of protein kinase C and calcium. J Biol Chem264:21536–21543
    [Google Scholar]
  18. Hofman P., Le Negrate G., Mograbi B., Hofman V., Brest P., Alliana-Schmid A., Flatau G., Boquet P., Rossi B.. 2000; Escherichia coli cytotoxic necrotizing factor-1 (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacteria phagocytosis. J Leukoc Biol68:522–528
    [Google Scholar]
  19. Humphries M. J.. 2000; Integrin structure. Biochem Soc Trans28:311–339[CrossRef]
    [Google Scholar]
  20. Jones M. J., Murray A. W.. 1986; Effect of membrane perturbation on protein kinase C activation: treatment with exogenous phospholipase C decreases translocation of enzyme to cellular membranes. Biochem Biophys Res Commun136:1083–1089[CrossRef]
    [Google Scholar]
  21. Kaplan S. S., Finch S. C., Basford R. E.. 1972; Polymorphonuclear leukocyte activation: effects of phospholipase C. Proc Soc Exp Biol Med140:540–543[CrossRef]
    [Google Scholar]
  22. König B., Vasil M. L., König W.. 1997; Role of hemolytic and nonhemolytic phospholipase C from Pseudomonas aeruginosa for inflammatory mediator release from human granulocytes. Int Arch Allergy Immunol112:115–124[CrossRef]
    [Google Scholar]
  23. Kurioka S., Matsuda M.. 1976; Phospholipase C assay using p -nitrophenylphosphoryl-choline together with sorbitol and its application to studying the metal and detergent requirement of the enzyme. Anal Biochem75:281–289[CrossRef]
    [Google Scholar]
  24. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  25. Ley K.. 1996; Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res32:733–742[CrossRef]
    [Google Scholar]
  26. Nagahama M., Okagawa Y., Nakayama T., Nishioka E., Sakurai J.. 1995; Site-directed mutagenesis of histidine residues in Clostridium perfringens alpha-toxin. J Bacteriol177:1179–1185
    [Google Scholar]
  27. Nakano M.. 1990; Determination of superoxide radical and singlet oxygen based on chemiluminescence of luciferin analogs. Methods Enzymol186:585–591
    [Google Scholar]
  28. Nishida A., Kimura H., Nakano M., Goto T.. 1989; A sensitive and specific chemiluminescence method for estimating the ability of human granulocytes and monocytes to generate \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(O_{2}^{{-}}\) \end{document}. Clin Chim Acta179:177–181[CrossRef]
    [Google Scholar]
  29. Nunn D. L., Watson S. P.. 1987; A diacylglycerol kinase inhibitor, R59022, potentiates secretion by and aggregation of thrombin-stimulated human platelets. Biochem J243:809–813
    [Google Scholar]
  30. Ochi S., Hashimoto K., Nagahama M., Sakurai J.. 1996; Phospholipid metabolism induced by Clostridium perfringens alpha-toxin elicits a hot–cold type of hemolysis in rabbit erythrocytes. Infect Immun64:3930–3933
    [Google Scholar]
  31. Ohta H., Okajima F., Ui M.. 1985; Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J Biol Chem260:15771–15780
    [Google Scholar]
  32. Patriarca P., Zatti M., Cramer R., Rossi F.. 1970; Stimulation of the respiration of polymorphonuclear leucocytes by phospholipase C. Life Sci9:841–849
    [Google Scholar]
  33. Robb-Smith A. T. H.. 1945; Tissue changes induced by Cl. welchii type A filtrates. Lancet2:362–368
    [Google Scholar]
  34. Rossjohn J., Tweten R. K., Rood J. I., Parker M. W.. 1999; Perfringolysin O. In The Comprehensive Sourcebook of Bacterial Protein Toxins pp496–510 Edited by Alouf J. E.. Freer J. H.. London: Academic Press;
    [Google Scholar]
  35. Sakurai J.. 1995; Major toxins of Clostridium perfringens . Rev Med Microbiol6:175–185
    [Google Scholar]
  36. Sakurai J., Fujii Y., Shirotani M.. 1990; Contraction induced by Clostridium perfringens alpha toxin in the isolated rat ileum. Toxicon28:411–418[CrossRef]
    [Google Scholar]
  37. Sakurai J., Ochi S., Tanaka H.. 1993; Evidence for coupling of Clostridium perfringens alpha-toxin-induced hemolysis to stimulated phosphatidic acid formation in rabbit erythrocytes. Infect Immun61:3711–3718
    [Google Scholar]
  38. Sakurai J., Ochi S., Tanaka H.. 1994; Regulation of Clostridium perfringens alpha-toxin-activated phospholipase C in rabbit erythrocyte membranes. Infect Immun62:717–721
    [Google Scholar]
  39. Sakurai J., Nagahama M., Ochi S.. 1997; Major toxins of Clostridium perfringens . J Toxicol Toxin Rev16:195–214[CrossRef]
    [Google Scholar]
  40. Stevens D. L.. 2000; The pathogenesis of clostridial myonecrosis. Int J Med Microbiol290:497–502[CrossRef]
    [Google Scholar]
  41. Stevens D. L., Mitten J., Henry C.. 1987; Effect of α and θ toxins from Clostridium perfringens on human polymorphonuclear leukocytes. J Infect Dis156:324–333[CrossRef]
    [Google Scholar]
  42. Stevens D. L., Tweten R. K., Awad M. M., Rood J. I., Bryant A. E.. 1997; Clostridial gas gangrene: evidence that αand θ toxins differentially modulate the immune response and induce acute tissue necrosis. J Infect Dis176:189–195[CrossRef]
    [Google Scholar]
  43. Styrt B., Walker D., White J. C.. 1989; Neutrophil oxidative metabolism after exposure to bacterial phospholipase C. J Lab Clin Med114:51–57
    [Google Scholar]
  44. Titball R. W.. 1993; Bacterial phospholipase C. Microbiol Rev57:347–366
    [Google Scholar]
  45. Titball R. W.. 1997a; Bacterial phospholipase. Trends Microbiol7:265
    [Google Scholar]
  46. Titball R. W.. 1997b; Clostridial phospholipases. In Clostridia: Molecular Biology and Pathogenesis pp223–242 Edited by Rood J. I.. McClane B. A., Songer J. G., Titball R. W.. London: Academic Press;
    [Google Scholar]
  47. Titball R. W.. 1999; Membrane-damaging and cytotoxic phospholipases. In The Comprehensive Sourcebook of Bacterial Protein Toxins pp310–329 Edited by Alouf J. E.. Freer J. H.. London: Academic Press;
    [Google Scholar]
  48. Yan S. R., Novak M. J.. 1999; Beta2 integrin-dependent phosphorylation of protein-tyrosine kinase Pyk2 stimulated by tumour necrosis factor alpha and fMLP in human neutrophils adherent to fibrinogen. FEBS Lett451:33–38[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-1-237
Loading
/content/journal/micro/10.1099/00221287-148-1-237
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error