1887

Abstract

A key intermediate for biodegradation of various distinct aromatic growth substrates in is protocatechuate (Pca), which is metabolized by the 4,5-extradiol () ring fission pathway. A locus harbouring genes from BR6020 was cloned, dubbed , which encodes the enzymes that degrade Pca. The identity of , encoding respectively the α- and β-subunit of the Pca ring-cleavage enzyme, was confirmed by N-terminal sequencing and molecular mass determination of both subunits from the separated enzyme. Disruption of resulted in a strain unable to grow on Pca and a variety of aromatic substrates funnelled through this compound (- and -hydroxybenzoate, -sulfobenzoate, phthalate, isophthalate, terephthalate, vanillate, isovanillate and veratrate). Growth on benzoate and -aminobenzoate (anthranilate) was not affected in this strain, indicating that these substrates are metabolized via a different lower pathway. Tentative functions for the products of other genes were assigned based on sequence identity and/or similarity to proteins from other proteobacteria involved in uptake or metabolism of aromatic compounds. This study provides evidence for a single lower pathway in for metabolism of Pca, which is generated by different upper pathways acting on a variety of aromatic substrates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2157
2001-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472157a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2157&mimeType=html&fmt=ahah

References

  1. Altenschmidt, U., Oswald, B., Steiner, E., Herrmann, H. & Fuchs, G. ( 1993; ). New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. J Bacteriol 175, 4851-4858.
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.[CrossRef]
    [Google Scholar]
  3. Arciero, D. M., Orville, A. M. & Lipscomb, J. D. ( 1990; ). Protocatechuate 4,5-dioxygenase from Pseudomonas testosteroni. Methods Enzymol 188, 89-95.
    [Google Scholar]
  4. Assinder, S. J. & Williams, P. A. ( 1990; ). The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31, 1-69.
    [Google Scholar]
  5. Ausubel, F. M. (1992). Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology. New York: Wiley.
  6. Chang, H. K. & Zylstra, G. J. ( 1998; ). Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180, 6529-6537.
    [Google Scholar]
  7. Collier, L. S., Nichols, N. N. & Neidle, E. L. ( 1997; ). benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol 179, 5943-5946.
    [Google Scholar]
  8. Dagley, S., Geary, P. J. & Wood, J. M. ( 1968; ). The metabolism of protocatechuate by Pseudomonas testosteroni. Biochem J 109, 559-568.
    [Google Scholar]
  9. Dennis, D. A., Chapman, P. J. & Dagley, S. ( 1973; ). Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission. J Bacteriol 113, 521-523.
    [Google Scholar]
  10. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76, 1648-1652.[CrossRef]
    [Google Scholar]
  11. Goyal, A. K. & Zylstra, G. J. ( 1996; ). Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl Environ Microbiol 62, 230-236.
    [Google Scholar]
  12. Hara, H., Masai, E., Katayama, Y. & Fukuda, M. ( 2000; ). The 4-oxalomesaconate hydratase gene, involved in the protocatechuate 4,5-cleavage pathway, is essential to vanillate and syringate degradation in Sphingomonas paucimobilis SYK-6. J Bacteriol 182, 6950-6957.[CrossRef]
    [Google Scholar]
  13. Harayama, S., Kok, M. & Neidle, E. L. ( 1992; ). Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46, 565-601.[CrossRef]
    [Google Scholar]
  14. Harwood, C. S. & Parales, R. E. ( 1996; ). The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50, 553-590.[CrossRef]
    [Google Scholar]
  15. Harwood, C. S., Nichols, N. N., Kim, M. K., Ditty, J. L. & Parales, R. E. ( 1994; ). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176, 6479-6488.
    [Google Scholar]
  16. Junker, F., Leisinger, T. & Cook, A. M. ( 1994; ). 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1 . 13 . 11 . 2 and EC 1 . 14 . 12 . -) in the degradative pathways of 2-aminobenzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology 140, 1713-1722.[CrossRef]
    [Google Scholar]
  17. Junker, F., Kiewitz, R. & Cook, A. M. ( 1997; ). Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J Bacteriol 179, 919-927.
    [Google Scholar]
  18. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. ( 1988; ). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70, 191-197.[CrossRef]
    [Google Scholar]
  19. Kersten, P. J., Dagley, S., Whittaker, J. W., Arciero, D. M. & Lipscomb, J. D. ( 1982; ). 2-Pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species. J Bacteriol 152, 1154-1162.
    [Google Scholar]
  20. Kersten, P. J., Chapman, P. J. & Dagley, S. ( 1985; ). Enzymic release of halogens or methanol from some substituted protocatechuic acids. J Bacteriol 162, 693-697.
    [Google Scholar]
  21. Klenk, H. P., Clayton, R. A., Tomb, J. F. & 22 other authors ( 1997; ). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370.
    [Google Scholar]
  22. Laue, H., Field, J. A. & Cook, A. M. ( 1996; ). Bacterial desulfonation of the ethanesulfonate metabolite of the chloroacetanilide herbicide metazachlor. Environ Sci Technol 30, 1129-1132.[CrossRef]
    [Google Scholar]
  23. Leveau, J. H. J., Zehnder, A. J. B. & Van Der Meer, J. R. ( 1998; ). The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134 (pJP4). J Bacteriol 180, 2237-2243.
    [Google Scholar]
  24. Lipscomb, J. D. & Orville, A. M. ( 1992; ). Mechanistic aspects of dihyroxybenzoate dioxygenases. In Degradation of Environmental Pollutants by Micro-organisms and their Metalloenzymes , pp. 243-298. Edited by H. Sigel & A. Sigel. New York:Marcel Dekker.
  25. Locher, H. H., Leisinger, T. & Cook, A. M. ( 1989; ). Degradation of p-toluenesulphonic acid via sidechain oxidation, desulphonation and meta ring cleavage in Pseudomonas (Comamonas) testosteroni T-2. J Gen Microbiol 135, 1969-1978.
    [Google Scholar]
  26. Locher, H. H., Malli, C., Hooper, S., Vorherr, T., Leisinger, T. & Cook, A. M. ( 1991; ). Degradation of p-toluic acid (p-toluenecarboxylic acid) and p-toluenesulphonic acid via oxygenation of the methyl sidechain is initiated by the same set of enzymes in Comamonas testosteroni T-2. J Gen Microbiol 137, 2201-2208.[CrossRef]
    [Google Scholar]
  27. de Lorenzo, V. & Timmis, K. N. ( 1994; ). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235, 386-405.
    [Google Scholar]
  28. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172, 6568-6572.
    [Google Scholar]
  29. Mampel, J. (2000). Transport- und Regulationsphänomene beim Abbau von 4-Toluolsulfonat in Comamonas testosteroni T-2. PhD thesis, University of Konstanz, Konstanz, Germany.
  30. Maruyama, K. ( 1979; ). Isolation and identification of the reaction product of α-hydroxy-γ-carboxymuconic ϵ-semialdehyde dehydrogenase. J Biochem 86, 1671-1677.
    [Google Scholar]
  31. Maruyama, K. ( 1983a; ). Enzymes responsible for degradation of 4-oxalmesaconic acid in Pseudomonas ochraceae. J Biochem 93, 567-574.
    [Google Scholar]
  32. Maruyama, K. ( 1983b; ). Purification and properties of 2-pyrone-4,6-dicarboxylate hydrolase. J Biochem 93, 557-565.
    [Google Scholar]
  33. Maruyama, K. ( 1985; ). Purification and properties of γ-oxalomesaconate hydratase from Pseudomonas ochraceae grown with phthalate. Biochem Biophys Res Commun 128, 271-277.[CrossRef]
    [Google Scholar]
  34. Maruyama, K. ( 1990a; ). Purification and properties of 4-hydroxy-4-methyl-2-oxoglutarate aldolase from Pseudomonas ochraceae grown on phthalate. J Biochem 108, 327-333.
    [Google Scholar]
  35. Maruyama, K. ( 1990b; ). Activation of Pseudomonas ochraceae 4-hydroxy-4-methyl-2-oxoglutarate aldolase by inorganic phosphate. J Biochem 108, 334-340.
    [Google Scholar]
  36. Maruyama, K., Ariga, N., Tsuda, M. & Deguchi, K. ( 1978; ). Purification and properties of α-hydroxy-γ-carboxymuconic ϵ-semialdehyde dehydrogenase. J Biochem 83, 1125-1134.
    [Google Scholar]
  37. Masai, E., Shinohara, S., Hara, H., Nishikawa, S., Katayama, Y. & Fukuda, M. ( 1999; ). Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 181, 55-62.
    [Google Scholar]
  38. Masai, E., Momose, K., Hara, H., Nishikawa, S., Katayama, Y. & Fukuda, M. ( 2000; ). Genetic and biochemical characterization of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase and its role in the protocatechuate 4,5-cleavage pathway in Sphingomonas paucimobilis SYK-6. J Bacteriol 182, 6651-6658.[CrossRef]
    [Google Scholar]
  39. van der Meer, J. R., de Vos, W. M., Harayama, S. & Zehnder, A. J. B. ( 1992; ). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 56, 677-694.
    [Google Scholar]
  40. Michalover, J. L., Ribbons, D. W. & Hughes, H. ( 1973; ). 3-Hydroxybenzoate 4-hydroxylase from Pseudomonas testosteroni. Biochem Biophys Res Commun 55, 888-896.[CrossRef]
    [Google Scholar]
  41. Nadeau, L. J. & Spain, J. C. ( 1995; ). Bacterial degradation of m-nitrobenzoic acid. Appl Environ Microbiol 61, 840-843.
    [Google Scholar]
  42. Nakatsu, C. H. & Wyndham, R. C. ( 1993; ). Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl Environ Microbiol 59, 3625-3633.
    [Google Scholar]
  43. Nakatsu, C. H., Fulthorpe, R. R., Holland, B. A., Peel, M. C. & Wyndham, R. C. ( 1995a; ). The phylogenetic distribution of a transposable dioxygenase from the Niagara River watershed. Mol Ecol 4, 593-603.[CrossRef]
    [Google Scholar]
  44. Nakatsu, C. H., Straus, N. A. & Wyndham, R. C. ( 1995b; ). The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141, 485-495.[CrossRef]
    [Google Scholar]
  45. Nakatsu, C. H., Providenti, M. & Wyndham, R. C. ( 1997; ). The cis-diol dehydrogenase cbaC gene of Tn5271 is required for growth on 3-chlorobenzoate but not 3,4-dichlorobenzoate. Gene 196, 209-218.[CrossRef]
    [Google Scholar]
  46. Nakazawa, T. & Hayashi, E. ( 1977; ). Phthalate metabolism in Pseudomonas testosteroni: accumulation of 4,5-dihydroxyphthalate by a mutant strain. J Bacteriol 131, 42-48.
    [Google Scholar]
  47. Nakazawa, T. & Hayashi, E. ( 1978; ). Phthalate and 4-hydroxyphthalate metabolism in Pseudomonas testosteroni: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol 36, 264-269.
    [Google Scholar]
  48. Nichols, N. N. & Harwood, C. S. ( 1997; ). PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 179, 5056-5061.
    [Google Scholar]
  49. Noda, Y., Nishikawa, S., Shiozuka, K. & 7 other authors ( 1990; ). Molecular cloning of the protocatechuate 4,5-dioxygenase genes of Pseudomonas paucimobilis. J Bacteriol 172, 2704–2709.
    [Google Scholar]
  50. Pao, S. S., Paulsen, I. T. & Saier, M. H.Jr ( 1998; ). Major facilitator superfamily. Microbiol Mol Biol Rev 62, 1-34.
    [Google Scholar]
  51. Parke, D. ( 1992; ). Application of p-toluidine in chromogenic detection of catechol and protocatechuate, diphenolic intermediates in catabolism of aromatic compounds. Appl Environ Microbiol 58, 2694-2697.
    [Google Scholar]
  52. Peel, M. C. & Wyndham, R. C. ( 1999; ). Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from ground-water and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill. Appl Environ Microbiol 65, 1627-1635.
    [Google Scholar]
  53. Peng, X., Masai, E., Katayama, Y. & Fukuda, M. ( 1999; ). Characterization of the meta-cleavage compound hydrolase gene involved in degradation of the lignin-related biphenyl structure by Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol 65, 2789-2793.
    [Google Scholar]
  54. Redenbach, M., Kieser, H. M., Denapaite, D., Eichner, A., Cullum, J., Kinashi, H. & Hopwood, D. A. ( 1996; ). A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21, 77-96.[CrossRef]
    [Google Scholar]
  55. Reineke, W. ( 1998; ). Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52, 287-331.[CrossRef]
    [Google Scholar]
  56. Ribbons, D. W. ( 1971; ). Requirement of two protein fractions for O-demethylase activity in Pseudomonas testosteroni. FEBS Lett 12, 161-165.[CrossRef]
    [Google Scholar]
  57. Schläfli, H. R., Weiss, M. A., Leisinger, T. & Cook, A. M. ( 1994; ). Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 176, 6644-6652.
    [Google Scholar]
  58. Spence, E. L., Kawamukai, M., Sanvoisin, J., Braven, H. & Bugg, T. D. ( 1996; ). Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J Bacteriol 178, 5249-5256.
    [Google Scholar]
  59. Sugimoto, K., Senda, T., Aoshima, H., Masai, E., Fukuda, M. & Mitsui, Y. ( 1999; ). Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Struct Fold Design 7, 953-965.[CrossRef]
    [Google Scholar]
  60. Tralau, T., Cook, A. M. & Ruff, J. ( 2001; ). Map of the IncP1β plasmid pTSA encoding the widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 67, 1508-1516.[CrossRef]
    [Google Scholar]
  61. Wang, Y. Z., Zhou, Y. & Zylstra, G. J. ( 1995; ). Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect 103, 9-12.[CrossRef]
    [Google Scholar]
  62. Wheelis, M. L., Palleroni, N. J. & Stanier, R. Y. ( 1967; ). The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans. Arch Microbiol 59, 302-314.
    [Google Scholar]
  63. Wyndham, R. C. ( 1986; ). Evolved aniline catabolism in Acinetobacter calcoaceticus during continuous culture of river water. Appl Environ Microbiol 51, 781-789.
    [Google Scholar]
  64. Wyndham, R. C., Singh, R. K. & Straus, N. A. ( 1988; ). Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch Microbiol 150, 237-243.[CrossRef]
    [Google Scholar]
  65. Ziegler, K., Buder, R., Winter, J. & Fuchs, G. ( 1989; ). Activation of aromatic acids and aerobic 2-aminobenzoate metabolism in a denitrifying Pseudomonas strain. Arch Microbiol 151, 171-176.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2157
Loading
/content/journal/micro/10.1099/00221287-147-8-2157
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error