1887

Abstract

The mature surface layer (S-layer) protein SbsC of ATCC 12980 comprises amino acids 31–1099 and self-assembles into an oblique lattice type which functions as an adhesion site for a cell-associated high-molecular-mass exoamylase. To elucidate the structure–function relationship of distinct segments of SbsC, three N- and seven C-terminal truncations were produced in a heterologous expression system, isolated, purified and their properties compared with those of the recombinant mature S-layer protein rSbsC. With the various truncated forms it could be demonstrated that the N-terminal part (aa 31–257) is responsible for anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, but this positively charged segment is not required for the self-assembly of SbsC, nor for generating the oblique lattice structure. If present, the N-terminal part leads to the formation of double-layer self-assembly products. Affinity studies further showed that the N-terminal part includes an exoamylase-binding site. Interestingly, the N-terminal part carries two sequences of 6 and 7 aa (AKAALD and KAAYEAA) that were also identified on the amylase-binding protein AbpA of . In contrast to the self-assembling N-terminal truncation rSbsC, two further N-terminal truncations (rSbsC, rSbsC) and three C-terminal truncations (rSbsC, rSbsC, rSbsC) had lost the ability to self-assemble and stayed in the water-soluble state. Studies with the self-assembling C-terminal truncations rSbsC, rSbsC and rSbsC revealed that the C-terminal 219 aa can be deleted without interfering with the self-assembly process, while the C-terminal 179 aa are not required for the formation of the oblique lattice structure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1353
2001-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471353a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1353&mimeType=html&fmt=ahah

References

  1. Archibald, A. R., Hancock, I. C. & Harwood, C. R. ( 1993; ). Cell wall structure, synthesis, and turnover. In Bacillus subtilis and Other Gram-Positive Bacteria , pp. 381-410. Edited by A. Sonenshein, J. A. Hoch & R. Losick. New York:Academic Press.
  2. Brechtel, E. & Bahl, H. ( 1999; ). In Thermoanaerobacterium thermosulfurigenes EM1 S-layer homology domains do not attach to peptidoglycan. J Bacteriol 181, 5017-5023.
    [Google Scholar]
  3. Chami, M., Bayan, N., Peyret., J. L., Gulik-Krzywicki, T., Leblon, G. & Shechter, E. ( 1997; ). The S-layer protein of Corynebacterium glutamicum is anchored to the cell wall by its C-terminal hydrophobic domain. Mol Microbiol 23, 483-492.[CrossRef]
    [Google Scholar]
  4. Chauvaux, S., Matuschek, M. & Béguin, P. ( 1999; ). Distinct affinity of binding sites for S-layer homologous domains in Clostridium thermocellum and Bacillus anthracis. J Bacteriol 181, 2455-2458.
    [Google Scholar]
  5. Egelseer, E. M., Schocher, I., Sleytr, U. B. & Sára, M. ( 1996; ). Evidence that an N-terminal S-layer protein fragment triggers the release of a cell wall-associated high-molecular weight amylase from Bacillus stearothermophilus ATCC 12980. J Bacteriol 178, 5602-5609.
    [Google Scholar]
  6. Egelseer, E. M., Schocher, I., Sleytr, U. B. & Sára, M. ( 1997; ). Evidence that the S-layer of Bacillus stearothermophilus strains functions as an adhesion site for a high-molecular mass amylase. FEMS Microbiol Rev 20, 114-118.
    [Google Scholar]
  7. Egelseer, E. M., Leitner, K., Jarosch, M., Hotzy, C., Zayni, S., Sleytr, U. B. & Sára, M. ( 1998; ). The S-layer proteins of two Bacillus stearothermophilus wild-type strains are bound via their N-terminal region to a secondary cell wall polymer of identical chemical composition. J Bacteriol 180, 1488-1495.
    [Google Scholar]
  8. Etienne-Toumelin, I., Sirard, J.-C., Duflot, E., Mock, M. & Fouet, A. ( 1995; ). Characterization of the Bacillus anthracis S-layer: cloning and sequencing of the structural gene. J Bacteriol 177, 614-620.
    [Google Scholar]
  9. Ilk, N., Kosma, P., Puchberger, M., Egelseer, E. M., Mayer, H. F., Sleytr, U. B. & Sára, M. ( 1999; ). Complete structural analysis and biological function of the secondary cell wall polymer of Bacillus sphaericus CCM 2177 serving as an S-layer specific anchor. J Bacteriol 181, 7643-7646.
    [Google Scholar]
  10. Jarosch, M., Egelseer, E. M., Mattanovich, D., Sleytr, U. B. & Sára, M. ( 2000; ). S-layer gene sbsC of Bacillus stearothermophilus ATCC 12980: molecular characterization and heterologous expression in Escherichia coli. Microbiology 146, 273-281.
    [Google Scholar]
  11. Lacks, S. A. & Springhorn, S. S. ( 1980; ). Renaturation of enyzmes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J Biol Chem 255, 7467-7473.
    [Google Scholar]
  12. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  13. Lemaire, M., Miras, I., Gounon, P. & Béguin, P. ( 1998; ). Identification of a region responsible for binding to the cell wall within the S-layer protein of Clostridium thermocellum. Microbiology 144, 211-217.[CrossRef]
    [Google Scholar]
  14. Mesnage, S., Tosi-Couture, E. & Fouet, A. ( 1999; ). Production and cell surface anchoring of functional fusions between the SLH motifs of the Bacillus anthracis S-layer proteins and the Bacillus subtilis levansucrase. Mol Microbiol 31, 927-936.[CrossRef]
    [Google Scholar]
  15. Messner, P., Hollaus, F. & Sleytr, U. B. ( 1984; ). Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J Syst Bacteriol 34, 202-210.[CrossRef]
    [Google Scholar]
  16. Messner, P., Pum, D. & Sleytr, U. B. ( 1986; ). Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a. J Ultrastuct Mol Struct Res 97, 73-88.[CrossRef]
    [Google Scholar]
  17. Olabarrı́a, G., Carrascosa, J. L., De Pedro, M. A. & Berenguer, J. ( 1996; ). A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus. J Bacteriol 178, 4765-4772.
    [Google Scholar]
  18. Ries, W., Hotzy, C., Schocher, I., Sleytr, U. B. & Sára, M. ( 1997; ). Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer. J Bacteriol 179, 3892-3898.
    [Google Scholar]
  19. Rogers, J. D., Haase, E. M., Brown, A. E., Douglas, C. W. I., Gwynn, J. P. & Scannapieco, F. A. ( 1998; ). Identification and analysis of a gene (abpA) encoding a major amylase-binding protein in Streptococcus gordonii. Microbiology 144, 1223-1233.[CrossRef]
    [Google Scholar]
  20. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Sára, M. & Sleytr, U. B. ( 2000; ). S-layer proteins. J Bacteriol 182, 859-868.[CrossRef]
    [Google Scholar]
  22. Sára, M., Kuen, B., Mayer, H. F., Mandl, F., Schuster, K. C. & Sleytr, U. B. ( 1996; ). Dynamics in oxygen-induced changes in S-layer protein synthesis from Bacillus stearothermophilus PV72 and its S-layer deficient variant T5 in continuous culture and studies on the cell wall composition. J Bacteriol 178, 2108-2117.
    [Google Scholar]
  23. Sára, M., Dekitsch, C., Mayer, H. F., Egelseer, E. M. & Sleytr, U. B. ( 1998; ). Influence of the secondary cell wall polymer on the reassembly, recrystallization and stability properties of the S-layer protein from Bacillus stearothermophilus PV72/p2. J Bacteriol 180, 4146-4153.
    [Google Scholar]
  24. Schäffer, C., Kählig, H., Christian, R., Schulz, G., Zayni, S. & Messner, P. ( 1999; ). The diacetamidodideoxyuronic acid-containing glycan chain of Bacillus stearothermophilus NRS 2004/3a represents the secondary cell wall polymer of wild-type B. stearothermophilus strains. Microbiology 145, 1575-1583.[CrossRef]
    [Google Scholar]
  25. Sleytr, U. B. & Beveridge, T. J. ( 1999; ). Bacterial S-layers. Trends Microbiol 7, 253-260.[CrossRef]
    [Google Scholar]
  26. Sleytr, U. B., Messner, P., Pum, D. & Sára, M. ( 1999; ). Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics and nanotechnology. Angew Chem Int Ed Engl 38, 1034-1054.[CrossRef]
    [Google Scholar]
  27. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. ( 1990; ). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60-89.
    [Google Scholar]
  28. Thomas, S., Austin, J. W., McCubbin, W. D., Kay, C. M. & Trust, T.J. ( 1992; ). Roles of structural domains in the morphology and surface anchoring of the tetragonal paracrystalline array of Aeromonas hydrophila. J Mol Biol 228, 652-661.[CrossRef]
    [Google Scholar]
  29. Transue, T. R., Smith, K. A., Mo, H., Goldstein, I. J. & Saper, M. A. ( 1997; ). Structure of benzyl-T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nature Struct Biol 4, 779-783.[CrossRef]
    [Google Scholar]
  30. Trust, T. J. ( 1993; ). Molecular, structural and functional properties of Aeromonas S-layers. In Advances in Bacterial Paracrystalline Surface Layers , pp. 159-173. Edited by T. J. Beveridge & S. F. Koval. New York:Plenum.
  31. Weis, W. I. ( 1997; ). Cell-surface carbohydrate recognition by animal and viral lectins. Curr Opin Struct Biol 7, 624-630.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1353
Loading
/content/journal/micro/10.1099/00221287-147-5-1353
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error