1887

Abstract

The styrene degradative pathway in CA-3 has previously been shown to be divided into an upper pathway involving the conversion of styrene to phenylacetic acid and a lower pathway for the subsequent degradation of phenylacetic acid. It is reported here that expression of the regulatory genes and is essential for transcription of the upper pathway, but not for degradation of the lower pathway inducer, phenylacetic acid. The presence of phenylacetic acid in the growth medium completely repressed the upper pathway enzymes even in the presence of styrene, the upper pathway inducer. This repression is mediated at the transcription level by preventing expression of the and regulatory genes. Finally, an examination was made of the various stages of the diauxic growth curve obtained when CA-3 was grown on styrene together with an additional carbon source and it is reported that catabolite repression may involve a different mechanism to transcriptional repression by an additional carbon source.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-973
2001-04-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470973a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-973&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987; Current Protocols in Molecular Biology New York: Greene Publishing Associates & Wiley Interscience;
    [Google Scholar]
  2. Baggi G., Boga M. M., Catelani D., Galli E., Treccani V. 1983; Styrene catabolism by a strain of Pseudomonas fluorescens. Syst Appl Microbiol4:141–147[CrossRef]
    [Google Scholar]
  3. Barne K. A., Bown J. A., Busby S. J. W., Minchin S. D. 1997; Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the ‘extended −10 motif’ at promoters. EMBO J16:4034–4040[CrossRef]
    [Google Scholar]
  4. Beltrametti F., Marconi A. M., Bestetti G., Colombo C., Galli E., Ruzzi M., Zennaro E. 1997; Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol63:2232–2239
    [Google Scholar]
  5. Bond J. A. 1989; Review of the toxicology of styrene. Crit Rev Toxicol19:227–249[CrossRef]
    [Google Scholar]
  6. Coschigano P. W., Young L. Y. 1997; Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1. Appl Environ Microbiol63:652–660
    [Google Scholar]
  7. Cox H. H. J., Hartman J. H. M., Dodemma H. J., Harder W. 1993; Growth of the black yeast Exophiala jeanselmei on styrene and styrene related compounds . Appl Microbiol Biotechnol39:372–376
    [Google Scholar]
  8. Di Gennaro P., Colmegna A., Galli E., Sello G., Palizzoni F., Bestetti G. 1999; A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST. Appl Environ Microbiol65:2794–2797
    [Google Scholar]
  9. Ferrandez A., Minambres B., Garcia B., Olivera E. R., Luengo J. M., Garcia J. L., Diaz E. 1998; Catabolism of phenylacetic acid in Escherichia coli . J Biol Chem273:25974–25986[CrossRef]
    [Google Scholar]
  10. Foureman G. L., Harris C., Guengerich F. P., Bend J. R. 1989; Stereoselectivity of styrene oxidation in microsomes and in cytochrome P-450 enzymes from rat liver. J Pharmacol Exp Ther248:492–497
    [Google Scholar]
  11. Hartmans S., Smits J. P., Volkering F, van der Werf M. J., de Bont J. A. M. 1989; Metabolism of styrene oxide and 2-phenylethanol in the styrene degrading Xanthobacter strain 124X. Appl Environ Microbiol55:2850–2855
    [Google Scholar]
  12. Hartmans S., van der Werf M. J., de Bont J. A. M. 1990; Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol56:1347–1351
    [Google Scholar]
  13. Hester K. L., Madhusudhan K. T., Sokatch J. R. 2000; Catabolite repression control by crc in 2xYT medium is mediated by posttranscriptional regulation of bkdR expression in Pseudomonas putida . J Bacteriol182:1150–1153[CrossRef]
    [Google Scholar]
  14. Lau P. C. K., Wang Y., Patel A., Labbe D., Bergeron H., Brousseau R., Konishi Y., Rawlings M. 1997; A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci USA94:1453–1458[CrossRef]
    [Google Scholar]
  15. Marconi A. M., Beltrametti F., Bestetti G., Solinas F., Ruzzi M., Galli E., Zennaro E. 1996; Cloning and characterisation of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol62:121–127
    [Google Scholar]
  16. Martinez-Blanco H., Reglero A., Rodriquez-Aparacio L. B., Luengo J. M. 1990; Purification and biochemical characterisation of phenylacetyl-coA ligase from Pseudomonas putida . A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem265:7084–7090
    [Google Scholar]
  17. Minambres B., Martinez-Blanco H., Olivera E. R.. 7 other authors 1996; Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida Uphenylacetyl-coA ligase. Use of this gene to improve the rate of benzylpenicillin synthesis in Penicillium chrysogenum . J Biol Chem52:33531–33538
    [Google Scholar]
  18. O’Connor K., Buckley C. M., Hartmans S., Dobson A. D. W. 1995; Possible regulatory role of nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol61:544–548
    [Google Scholar]
  19. O’Connor K. E., Dobson A. D. W., Hartmans S. 1997; Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl Environ Microbiol63:4287–4291
    [Google Scholar]
  20. Panke S., Witholt B., Schmid A., Wubbolts M. G. 1998; Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol64:2032–2043
    [Google Scholar]
  21. Santos P. M., Blatny J. M., Di Bartolo I., Valla S., Zennaro E. 2000; Physiological analysis of the expression of the styrene degradation gene cluster in Pseudomonas fluorescens ST. Appl Environ Microbiol66:1305–1310[CrossRef]
    [Google Scholar]
  22. Shirai K., Hisatsuka K. 1979; Isolation and identification of styrene assimilating bacteria. Agric Biol Chem43:1595–1596[CrossRef]
    [Google Scholar]
  23. Velasco A., Alonso S., Garcia J. L., Perera J., Diaz E. 1998; Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp.strain Y2 . J Bacteriol180:1063–1071
    [Google Scholar]
  24. Vitovski S. 1993; Phenylacetate–coenzyme A ligase is induced during growth on phenylacetic acid in different bacteria of several genera. FEMS Microbiol Lett108:1–6[CrossRef]
    [Google Scholar]
  25. Warhurst A. M., Clarke K. F., Hill R. A., Holt R. A., Fewson C. A. 1994; Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259 . Appl Environ Microbiol60:1137–1145
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-973
Loading
/content/journal/micro/10.1099/00221287-147-4-973
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error