1887

Abstract

() was resistant to at least 7% (w/v) tannic acid and 4% (w/v) acacia condensed tannin, levels 10-fold greater than those tolerated by . Growth of in liquid medium was characterized by a lag period which increased, and a growth rate which decreased, with increasing tannin concentration. was also more tolerant to the presence of simple phenolic acid monomers than was , but the lag period was still concentration dependent. Gallate decarboxylase activity in was elevated in the presence of tannic acid or gallic acid but not with other phenolic acids. Scanning electron microscopic analysis showed that both the size and shape of and changed in response to tannin but only was surrounded by an extracellular polysaccharide matrix which accumulated in a tannin-concentration-dependent fashion. Washing of the cells to remove extracellular polysaccharide increased the lag period of in the presence of 1% (w/v) tannic acid from 4 h to 6 h. In contrast, increasing extracellular polysaccharide synthesis in did not increase its tolerance to tannic acid. These data demonstrate that has developed a number of mechanisms to reduce the potential effect of tannins on cell growth, and that these mechanisms provide the organism with a selective advantage over when grown in the presence of tannins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-1025
2001-04-01
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1471025a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-1025&mimeType=html&fmt=ahah

References

  1. Bae H. D., McAllister T. A., Yanke J., Cheng K. J., Muir A. D. 1993; Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl Environ Microbiol 59:2132–2138
    [Google Scholar]
  2. Barry T. N., McNabb W. C. 1999; The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br J Nutr 81:263–272
    [Google Scholar]
  3. Barry T. N., Manley T. R. 1986; Interrelationships between the concentrations of total condensed tannin, free condensed tannin and lignin in Lotus sp. and their possible consequences in ruminant nutrition. J Sci Food Agric 37:248–254 [CrossRef]
    [Google Scholar]
  4. Bernays E. A., Cooper D., Driver G., Bilgener M. 1989; Herbivores and plant tannins. Adv Ecol Res 19:263–302
    [Google Scholar]
  5. Broadhurst W. T., Jones R. B. 1978; Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29:788–794 [CrossRef]
    [Google Scholar]
  6. Brooker J. D., O’Donovan L. A., Skene I., Clarke K., Blackall L., Muslera P. 1994; Streptococcus caprinus sp. nov., a tannin-resistant ruminal bacterium from feral goats. Lett Appl Microbiol 18:313–318 [CrossRef]
    [Google Scholar]
  7. Brune A., Schink B. 1992; Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici : fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch Microbiol 157:417–424 [CrossRef]
    [Google Scholar]
  8. Butler L. G. 1992; Antinutritional effects of condensed and hydrolysable tannins. Basic Life Sci 59:693–698
    [Google Scholar]
  9. Chiquette J., Costerton J. W., Cheng K. J., Milligan L. P. 1988; Effect of tannins on the digestibility of two isosynthetic strains of birdsfoot trefoil ( Lotus corniculatus L.) using in vitro and in sacco techniques. Can J Anim Sci 68:751–763 [CrossRef]
    [Google Scholar]
  10. Degen A. A., Becker K., Makkar H. P. S., Borowy N. 1995; Acacia saligna as a fodder tree for desert livestock and the interaction of its tannins with fibre fractions. J Sci Food Agric 68:65–71 [CrossRef]
    [Google Scholar]
  11. De Vuyst L., Degeest B. 1999; Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–77 [CrossRef]
    [Google Scholar]
  12. Evans W. C., Fuchs G. 1988; Anaerobic degradation of aromatic compounds. Annu Rev Microbiol 42:289–317 [CrossRef]
    [Google Scholar]
  13. Frehel C., Hellio R., Cremieux A. C., Contrepois A., Bouvet A. 1988; Nutritionally variant streptococci develop ultrastructural abnormalities during experimental endocarditis. Microb Pathog 4:247–255 [CrossRef]
    [Google Scholar]
  14. Fuchs G., Mohamed M. E. S., Altenschmidt U., Kock J., Lack A., Brackmann R., Lochmeyer C., Oswald B. 1994; Biochemistry of anaerobic degradation of aromatic compounds. In Biochemistry of Microbial Degradation pp 513–553 Edited by Ratledge C. Dordrecht: Kluwer;
    [Google Scholar]
  15. Hagerman A. E., Klucher K. M. 1986; Tannin–protein interactions. Prog Clin Biol Res 213:67–76
    [Google Scholar]
  16. Haslam E. 1989 Plant Polyphenols – Vegetable Tannins Revisited Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  17. Inoue K. H., Hagerman A. E. 1988; Determination of gallotannin with rhodanine. Anal Biochem 169:363–369 [CrossRef]
    [Google Scholar]
  18. Jones G. A., McAllister T. A., Muir A. D., Cheng K. J. 1994; Effects of Sainfoin ( Onobrychis viciifolia Scop) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl Environ Microbiol 60:1374–1378
    [Google Scholar]
  19. Karnovsky M. J. 1965; A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy . J. Cell Biol 27:137–138
    [Google Scholar]
  20. Krumholz L. R., Bryant M. P. 1986; Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 14:8–14
    [Google Scholar]
  21. Kumar R., Singh M. 1984; Tannins: their adverse role in ruminant nutrition. J Agric Food Chem 32:447–453 [CrossRef]
    [Google Scholar]
  22. Kumar R., Vaithiyanathan S. 1990; Occurrence, nutritional significance and effect on animal productivity of tannins in tree leaves. Anim Feed Sci Technol 30:21–38 [CrossRef]
    [Google Scholar]
  23. McAllister T. A., Bae H. D., Yanke L. J., Cheng K. J., Muir A. 1994; Effect of condensed tannins from birdsfoot trefoil on endoglucanase activity and the digestion of cellulose filter paper by ruminal fungi. Can J Microbiol 40:298–305 [CrossRef]
    [Google Scholar]
  24. McSweeney C. S., Kennedy P. M., John A. 1988; Effect of ingestion of hydrolysable tannins in Terminalia oblongata on digestion in sheep fed S tylosanthes hamata . Aust J Agric Res 39:235–244 [CrossRef]
    [Google Scholar]
  25. Mole S., Waterman P. G. A. 1987; Critical analysis of techniques for measuring tannins in ecological studies. I. Techniques for chemically defining tannins. Oecologia 72:137–147 [CrossRef]
    [Google Scholar]
  26. Nelson K. E., Pell A. N., Schofield P., Zinder S. 1995; Isolation and characterisation of an anaerobic ruminal bacterium capable of degrading hydrolysable tannin. Appl Environ Microbiol 61:3293–3298
    [Google Scholar]
  27. Nelson K. E., Thonney M. L., Woolston T. K., Zinder S., Pell A. N. 1998; Phenotypic and phylogenetic characterisation of ruminal tannin-tolerant bacteria. Appl Environ Microbiol 64:3824–3830
    [Google Scholar]
  28. Nili N., Brooker J. D. 1995; A defined medium for rumen bacteria and identification of strains impaired in de novo biosynthesis of certain amino acids. Lett Appl Microbiol 21:69–74 [CrossRef]
    [Google Scholar]
  29. Ogimoto K., Imai S. 1984 Atlas of Rumen Microbiology Tokyo: Japan Scientific Societies Press;
    [Google Scholar]
  30. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212 [CrossRef]
    [Google Scholar]
  31. Skene I. K., Brooker J. D. 1995; Characterisation of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium . Anaerobe 1:321–327 [CrossRef]
    [Google Scholar]
  32. Sly L. I., Cahill M. M., Osawa R., Fujisawa T. 1997; The tannin-degrading species Streptococcus caprinus and Streptococcus gallolyticus are subjective synonyms. Int J Syst Bacteriol 47:893–894 [CrossRef]
    [Google Scholar]
  33. Spurr A. R. 1969; A low-viscosity epoxy resin-embedding medium for electron microscopy. J Ultrastruct Res 26:31–43 [CrossRef]
    [Google Scholar]
  34. Tsai C. G., Jones G. A. 1975; Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can J Microbiol 21:794–801 [CrossRef]
    [Google Scholar]
  35. Waghorn G. C., Jones W. T., Shelton I. D., McNabb W. C. 1990; Condensed tannins and the nutritive value of herbage. Proc N Z Grassl Assoc 51:171–176
    [Google Scholar]
  36. Whitfield C. 1988; Bacterial extracellular polysaccharides. Can J Microbiol 34:415–420 [CrossRef]
    [Google Scholar]
  37. Wood C. D., Plumb V. E. 1995; Evaluation of assays for phenolic compounds on the basis of in vitro gas production by rumen microorganisms. Anim Feed Sci Technol 56:195–206 [CrossRef]
    [Google Scholar]
  38. Yan Q. Y., Bennick A. 1995; Identification of histatins as tannin-binding proteins in human saliva. Biochem J 311:341–347
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-1025
Loading
/content/journal/micro/10.1099/00221287-147-4-1025
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error