1887

Abstract

resides within the macrophages of the host, but the molecular and cellular mechanisms of survival are poorly understood. Recent evidence suggests that the attenuated vaccine strain BCG is both a deletion and regulatory mutant, yet retains both its immunoprotective and intra-macrophage survival potential. In an attempt to define BCG genes expressed during interaction with macrophages, the patterns of protein synthesis were examined by both one- and two-dimensional gel electrophoresis of BCG while inside the human leukaemic macrophage cell line THP-1. This study demonstrated that BCG expresses proteins while resident inside macrophages that are not expressed during growth in culture media or under conditions of heat shock. Western blotting analysis revealed that some of the differentially expressed proteins are specifically recognized by human -infected sera. Proteome analysis by two-dimensional electrophoresis and MS identified six abundant proteins that showed increased expression inside macrophages: 16 kDa α-crystallin (HspX), GroEL-1 and GroEL-2, a 317 kDa hypothetical protein (Rv2623), InhA and elongation factor Tu (Tuf). Identification of proteins by such a strategy will help elucidate the molecular basis of the attenuation and the vaccine potential of BCG, and may provide antigens that distinguish infection with from vaccination with BCG.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-459
2001-02-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470459a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-459&mimeType=html&fmt=ahah

References

  1. Abshire K. Z., Neidhardt F. C.. 1993; Analysis of proteins synthesised by Salmonella typhimurium during growth within a host macrophage. J Bacteriol175:3734–3743
    [Google Scholar]
  2. Alavi M. R., Affronti L. F.. 1994; Induction of mycobacterial proteins during phagocytosis and heat shock: a time interval analysis. J Leukoc Biol55:633–641
    [Google Scholar]
  3. Arruda S., Bomfim G., Knights R., Huima-Byron T., Riley L. W.. 1993; Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science261:1454–1457[CrossRef]
    [Google Scholar]
  4. Banerjee D. K., Patel B. K. R.. 1994; Evaluation of the activity of a number of antimicrobial agents against mycobacteria within mouse macrophages by a radiometric method. J Antimicrob Chemother31:289–302
    [Google Scholar]
  5. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R. Jr. 1994; inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science263:227–230[CrossRef]
    [Google Scholar]
  6. Barker K., Fan H., Carroll C., Kaplan G., Barker J., Hellmann W., Cohn Z. A.. 1996; Nonadherent cultures of human monocytes kill Mycobacterium smegmatis, but adherent cultures do not. Infect Immun64:428–433
    [Google Scholar]
  7. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M.. 1999; Comparative genomics of BCG vaccines by whole genome DNA microarray. Science284:1520–1523[CrossRef]
    [Google Scholar]
  8. Bermudez L. E., Champsi J.. 1993; Infection with Mycobacterium avium induces production of interleukin-10, and administration of anti-IL-10 antibody is associated with enhanced resistance to infection in mice. Infect Immun61:3093–3097
    [Google Scholar]
  9. Bourdet-Sicard R., Tran Van Nhieu G.. 1999; Actin reorganisation by SipA and Salmonella invasion of epithelial cells. Trends Microbiol7:309–310[CrossRef]
    [Google Scholar]
  10. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  11. Buchmeier N. A., Heffron F.. 1990; Induction of Salmonella stress proteins upon infection of macrophages. Science248:730–732[CrossRef]
    [Google Scholar]
  12. Burns-Keliher L. L., Portteus A., Curtiss R. 3rd. 1997; Specific detection of Salmonella typhimurium proteins synthesized intracellularly. J Bacteriol179:3604–3612
    [Google Scholar]
  13. Cole S. T., Brosch R., Parkhill J..39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  14. Collins D. M., Kawakami R. P., de Lisle G. W., Pascopella L., Bloom B. R., Jacobs W. R. Jr. 1995; Mutation of the principal σ factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA92:8036–8040[CrossRef]
    [Google Scholar]
  15. Cunningham A. F., Spreadbury C. L.. 1998; Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J Bacteriol180:801–808
    [Google Scholar]
  16. Friedland J. S., Remick D. G., Shattock R., Griffin G. E.. 1992; Secretion of interleukin-8 following phagocytosis of Mycobacterium tuberculosis by human monocyte cell lines. Eur J Immunol22:1373–1378[CrossRef]
    [Google Scholar]
  17. Friedland J. S., Shattock R., Griffin G. E.. 1993; Phagocytosis of Mycobacterium tuberculosis or particulate stimuli by human monocytic cells induces equivalent monocyte chemoattractant protein-1 gene expression. Cytokine5:150–156[CrossRef]
    [Google Scholar]
  18. Gupta S., Tyagi A. K. 1993; Sequence of a newly identified Mycobacterium tuberculosis gene encoding a protein with sequence homology to virulence regulating proteins. Gene126:157–158[CrossRef]
    [Google Scholar]
  19. Hu Y. M., Butcher P. D., Sole K., Mitchison D. A., Coates A. R.. 1998; Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. FEMS Microbiol Lett158:139–145[CrossRef]
    [Google Scholar]
  20. Humphery-Smith I., Cordwell S. J., Blackstock W. P.. 1997; Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis18:1217–1242[CrossRef]
    [Google Scholar]
  21. Hunter S. W., Gaylord H., Brennan P. J.. 1986; Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem261:12345–12351
    [Google Scholar]
  22. Jensen O. N., Podtelejnikov A., Mann M.. 1996; Delayed extraction improves specificity in database searches by matrix-assisted laser desorption/ionization peptide maps. Rapid Commun Mass Spectrom10:1371–1378[CrossRef]
    [Google Scholar]
  23. Jensen O. N., Wilm M., Shevchenko A., Mann M.. 1999; Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. Methods Mol Biol112:513–530
    [Google Scholar]
  24. Jungblut P. R., Schaible U. E., Mollenkopf H. J..7 other authors 1999; Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol33:1103–1117
    [Google Scholar]
  25. Kantengwa S., Donati Y. R. A., Clerget M..7 other authors 1991; Heat shock proteins: an autoprotective mechanism for inflammatory cells?. Semin Immunol3:49–56
    [Google Scholar]
  26. Kaufmann S. H. E.. 1991; Heat shock proteins and pathogenesis of bacterial infections. Springer Semin Immunopathol13:25–36[CrossRef]
    [Google Scholar]
  27. Kaufmann S. H. E., Schoel B., van Embden J. D. A., Koga T., Wand-Wurttenberger A., Munk M. E., Steinhoff U.. 1991; Heat-shock protein 60: implications for pathogenesis of and protection against bacterial infections. Immunol Rev121:67–90[CrossRef]
    [Google Scholar]
  28. Kinger A. K., Tyagi J. S.. 1993; Identification and cloning of genes differentially expressed in the virulent strain of Mycobacterium tuberculosis. Gene131:113–117[CrossRef]
    [Google Scholar]
  29. Kwaik Y. A.. 1998; Induced expression of the Legionella pneumophila gene encoding a 20-kilodalton protein during intracellular infection. Infect Immun66:203–212
    [Google Scholar]
  30. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  31. Lee B.-Y., Horwitz M. A.. 1995; Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J Clin Invest96:245–249[CrossRef]
    [Google Scholar]
  32. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K.. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol178:1274–1282
    [Google Scholar]
  33. Mann M., Wilm M.. 1994; Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem66:4390–4399[CrossRef]
    [Google Scholar]
  34. Mehta P. K., King C. H., White E. H., Murtagh J. J. Jr, Quinn F. D.. 1996; Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun64:2673–2679
    [Google Scholar]
  35. Mekalanos J. J.. 1992; Environmental signals controlling gene expression of virulence determinants of bacteria. J Bacteriol174:1–7
    [Google Scholar]
  36. Mistry Y., Young D. B., Mukherjee R.. 1992; hsp70 synthesis in Schwann cells in response to heat shock and infection with Mycobacterium leprae. Infect Immun60:3105–3110
    [Google Scholar]
  37. Mollenkopf H.-J., Jungblut P. R., Raupach B., Mattow J., Lamer S., Zimny-Arndt U., Schaible U. E., Kaufmann S. H. E.. 1999; A dynamic bacterial two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis20:2172–2180[CrossRef]
    [Google Scholar]
  38. Morrissey J. H.. 1981; Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem117:307–310[CrossRef]
    [Google Scholar]
  39. O’Farrell P. H.. 1975; High-resolution two-dimensional electrophoresis of proteins. J Biol Chem250:4007–4021
    [Google Scholar]
  40. Pascopella L., Collins F. M., Martin J. M., Lee M. H., Hatfull G. F., Stover C. H., Bloom B. R., Jacobs W. R. Jr. 1994; Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun62:1313–1319
    [Google Scholar]
  41. Patel B. K. R., Banerjee D. K., Butcher P. D.. 1991; Characterisation of the heat shock response in Mycobacterium bovis BCG. J Bacteriol173:99–111
    [Google Scholar]
  42. Plum G., Clark-Curtiss J. E.. 1994; Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun62:476–483
    [Google Scholar]
  43. Plum G., Brenden M., Clark-Curtiss J. E., Pulverer G.. 1997; Cloning, sequencing and expression of the mig gene of Mycobacterium avium, which codes for a secreted macrophage-induced protein. Infect Immun65:4548–4557
    [Google Scholar]
  44. Polla B. S.. 1988; A role for heat shock proteins in inflammation?. Immunol Today9:134–137[CrossRef]
    [Google Scholar]
  45. Shevchenko A., Wilm M., Vorm O., Mann M.. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem68:850–858[CrossRef]
    [Google Scholar]
  46. Sturgill-Koszycki S., Haddix P. L., Russell D. G.. 1997; The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis18:2558–2565[CrossRef]
    [Google Scholar]
  47. Tabira Y., Ohara N., Kitaura H., Matsumoto S., Naito M., Yamada T.. 1998; The 16-kDa alpha-crystallin-like protein of Mycobacterium bovis BCG is produced under conditions of oxygen deficiency and is associated with ribosomes. Res Microbiol149:255–264[CrossRef]
    [Google Scholar]
  48. Tsuchiya S., Yambi M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K.. 1980; Establishment and characterisation of a human acute monocytic leukaemia cell line (THP-1). Int J Cancer26:171–176[CrossRef]
    [Google Scholar]
  49. Tsuchiya S., Kobayashi Y., Goto Y., Okumura H., Nakae S., Konno T., Tada K.. 1982; Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res42:1530–1536
    [Google Scholar]
  50. Urquhart B. L., Atsalos T. E., Roach D., Basseal D. J., Bjellqvist B., Britton W. L., Humphery-Smith I.. 1996; ‘Proteomic contigs’ of Mycobacterium tuberculosis and Mycobacterium bovis (BCG) using novel immobilised pH gradients. Electrophoresis18:1384–1392
    [Google Scholar]
  51. Urquhart B. L., Cordwell S. J., Humphery-Smith I.. 1998; Comparison of predicted and observed properties of proteins encoded in the genome of Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun253:70–79[CrossRef]
    [Google Scholar]
  52. Via L. E., Curcic R., Mudd M. H., Dhandayuthapani S., Ulmer R. J., Deretic V.. 1996; Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J Bacteriol178:3314–3321
    [Google Scholar]
  53. Wilm M., Mann M.. 1994; Electrospray and taylor-cone theory, Dole’s beam of macromolecules at last?. Int J Mass Spectrom Ion Proc136:167–180[CrossRef]
    [Google Scholar]
  54. Wilm M., Mann M.. 1996; Analytical properties of the nanoelectrospray ion source. Anal Chem68:1–8
    [Google Scholar]
  55. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M.. 1996; Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature379:466–469[CrossRef]
    [Google Scholar]
  56. Wilson T. M., de Lisle G. W., Collins D. M.. 1995; Effects of inhA and katG on isoniazid resistance and virulence of Mycobacterium tuberculosis. Mol Microbiol15:1009–1015[CrossRef]
    [Google Scholar]
  57. Wong D. K., Lee B.-Y., Horwitz M. A., Gibson B. W.. 1999; Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun67:327–336
    [Google Scholar]
  58. Wren B. W., Colby S. M., Cubberley R. R., Pallen M. J.. 1992; Degenerate PCR primers for the amplification of fragments from genes encoding response regulators from a range of pathogenic bacteria. FEMS Microbiol Lett99:287–292[CrossRef]
    [Google Scholar]
  59. Yuan Y., Crane D. D., Barry C. E. III.. 1996; Stationary phase-associated protein expression in Mycobacterium tuberculosis: function of the mycobacterial α-crystallin homolog. J Bacteriol178:4484–4492
    [Google Scholar]
  60. Yuan Y., Crane D. D., Simpson R. M., Zhu Y. Q., Hickey M. J., Sherman D. R., Barry C. E. 3rd. 1998a; The 16-kDa alpha crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. Proc Natl Acad Sci USA95:9578–9583[CrossRef]
    [Google Scholar]
  61. Yuan Y., Zhu Y., Crane D. D., Barry C. E. 3rd. 1998b; The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol29:1449–1458[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-459
Loading
/content/journal/micro/10.1099/00221287-147-2-459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error