1887

Abstract

This paper reports the functional characterization of AtrBp, an ABC transporter from . AtrBp is a multidrug transporter and has affinity to substrates belonging to all major classes of agricultural fungicides and some natural toxic compounds. The substrate profile of AtrBp was determined by assessing the sensitivity of deletion and overexpression mutants of to several toxicants. All mutants showed normal growth as compared to control isolates. Δ mutants displayed increased sensitivity to anilinopyrimidine, benzimidazole, phenylpyrrole, phenylpyridylamine, strobirulin and some azole fungicides. Increased sensitivity to the natural toxic compounds camptothecin (alkaloid), the phytoalexin resveratrol (stilbene) and the mutagen 4-nitroquinoline oxide was also found. Overexpression mutants were less sensitive to a wide range of chemicals. In addition to the compounds mentioned above, decreased sensitivity to a broader range of azoles, dicarboximides, quintozene, acriflavine and rhodamine 6G was observed. Decreased sensitivity in overexpression mutants negatively correlated with levels of expression. Interestingly, the overexpression mutants displayed increased sensitivity to dithiocarbamate fungicides, chlorothalonil and the iron-activated antibiotic phleomycin. Accumulation of the azole fungicide [C]fenarimol by the overexpression mutants was lower as compared to the parental isolate, demonstrating that AtrBp acts by preventing intracellular accumulation of the toxicant. Various metabolic inhibitors increased accumulation levels of [C]fenarimol in the overexpression mutants to wild-type levels, indicating that reduced accumulation of the fungicide in these mutants is due to increased energy-dependent efflux as a result of higher pump capacity of AtrBp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-8-1987
2000-08-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/8/1461987a.html?itemId=/content/journal/micro/10.1099/00221287-146-8-1987&mimeType=html&fmt=ahah

References

  1. Ambudkar S. V., Dey S., Hrycyna C. A., Ramachandra M., Pastan I., Gottesman M. M.. 1999; Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol39:361–398[CrossRef]
    [Google Scholar]
  2. Andrade A. C., Zwiers L.-H., De Waard M. A.. 1999; ABC transporters and their impact on pathogenesis and drug sensitivity. In Pesticide Chemistry and Bioscience, the Food-environment Challenge pp.221–235Edited by Brooks G. T., Roberts T. R.. Cambridge: Royal Society of Chemistry;
    [Google Scholar]
  3. Andrade A. C., Van Nistelrooy J. G. M., Perry R. B., Skatrud P. L., De Waard M. A.. 2000; The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and antibiotic production. Mol Gen Genet (in press)
    [Google Scholar]
  4. Angermayr K., Parson W., Stoffler G., Haas H.. 1999; Expression of atrC – encoding a novel member of the ATP binding cassette transporter family in Aspergillus nidulans – is sensitive to cycloheximide. Biochim Biophys Acta1453:304–310[CrossRef]
    [Google Scholar]
  5. Clutterbuck A. J.. 1993; Aspergillus nidulans genetic loci. In Genetic Maps pp.371–384Edited by O’Brien S. T.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  6. De Waard M., Van Nistelrooy J.. 1979; Mechanisms of resistance to fenarimol in Aspergillus nidulans. Pestic Biochem Physiol10:219–229[CrossRef]
    [Google Scholar]
  7. De Waard M., Van Nistelrooy J.. 1980; An energy-dependent efflux mechanism for fenarimol in a wild-type strain and fenarimol-resistant mutants of Aspergillus nidulans. Pestic Biochem Physiol13:255–266[CrossRef]
    [Google Scholar]
  8. De Waard M. A., Van, Nistelrooy J. G. M., Langeveld C. R., Van Kan J. A. L., Del Sorbo G.. 1995; Multidrug resistance in filamentous fungi. In 11th International Rheinhardsbrunn Symposium pp.293–300 Friedrichroda; Intercept, UK:
    [Google Scholar]
  9. Decottignies A., Goffeau A.. 1997; Complete inventory of the yeast ABC proteins. Nat Genet15:137–145[CrossRef]
    [Google Scholar]
  10. Del Sorbo G., Andrade A. C., Van Nistelrooy J. G. M., Van Kan J. A. L., Balzi E., De Waard M. A.. 1997; Multidrug resistance in Aspergillus nidulans involves novel ATP-binding cassette transporters. Mol Gen Genet254:417–426[CrossRef]
    [Google Scholar]
  11. Doige C. A., Yu X., Sharom F. J.. 1993; The effects of lipids and detergents on ATPase-active P-glycoprotein. Biochim Biophys Acta1146:65–72[CrossRef]
    [Google Scholar]
  12. Fidel S., Doonan J. H., Morris N. R.. 1988; Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a gamma-actin. Gene70:283–293[CrossRef]
    [Google Scholar]
  13. Goodall S. D., Gielkens M. M. C., Stergiopoulos I., Venema K., Zwiers L.-H., De Waard M. A.. 1999; ABC transporters of Mycosphaerella graminicola, a fungal pathogen of wheat. In 2nd FEBS Advanced Lecture Course – ATP-binding Cassette Transporters: from Multidrug Resistance to Genetic Disease p.77 Gosau: FEBS;
    [Google Scholar]
  14. Haas H., Zadra I., Stoffler G., Angermayr K.. 1999; The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem274:4613–4619[CrossRef]
    [Google Scholar]
  15. van Heemst D., Swart K., Holub E. F., van Dijk R., Offenberg H. H., Goosen T., van den Broek H. W., Heyting C.. 1997; Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51. Mol Gen Genet254:654–664[CrossRef]
    [Google Scholar]
  16. van Helvoort A., Smith A. J., Sprong H., Fritzsche I., Schinkel A. H., Borst P., van Meer G.. 1996; MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell87:507–517[CrossRef]
    [Google Scholar]
  17. Higgins C. F.. 1992; ABC transporters: from microorganisms to man. Annu Rev Cell Biol8:67–113[CrossRef]
    [Google Scholar]
  18. Higgins C. F.. 1994; Flip-flop: the transmembrane translocation of lipids. Cell79:393–395[CrossRef]
    [Google Scholar]
  19. Jespers A. B. K., De Waard M. A.. 1993; Natural products in plant protection. Neth J Plant Pathol99:109–117[CrossRef]
    [Google Scholar]
  20. Joseph-Horne T., Hollomon D., Manning N., Kelly S. L.. 1996; Investigation of the sterol composition and azole resistance in field isolates of Septoria tritici. Appl Environ Microbiol62:184–190
    [Google Scholar]
  21. Knight S. C., Anthony V. M., Brady A. M..8 other authors 1997; Rationale and perspectives on the development of fungicides. Annu Rev Phytopathol35:349–372[CrossRef]
    [Google Scholar]
  22. Kolaczkowski M., Kolaczkowska A., Luczynski J., Witek S., Goffeau A.. 1998; In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist4:143–158[CrossRef]
    [Google Scholar]
  23. Logemann J., Schell J., Willmitzer L.. 1987; Improved method for isolation of RNA from plant tissues. Anal Biochem163:16–20[CrossRef]
    [Google Scholar]
  24. Nagao K., Taguchi Y., Arioka M., Kadokura H., Takatsuki A., Yoda K., Yamasaki M.. 1995; bfr1+, a novel gene of Schizosaccharomyces pombe which confers brefeldin a resistance, is structurally related to the ATP-binding cassette superfamily. J Bacteriol177:1536–1543
    [Google Scholar]
  25. Nakaune R., Adachi K., Nawata O., Tomiyama M., Akutsu K., Hibi T.. 1998; A novel ATP-binding cassette transporter involved in multidrug resistance in the phytopathogenic fungus Penicillium digitatum. Appl Environ Microbiol64:3983–3988
    [Google Scholar]
  26. Oakley B. R., Rinehart J. E., Mitchell B. L., Oakley C. E., Carmona C., Gray G. L., May G. S.. 1987; Cloning, mapping and molecular analysis of the pyrG (orotidine-5′-phosphate decarboxylase) gene of Aspergillus nidulans. Gene61:385–399[CrossRef]
    [Google Scholar]
  27. Pontecorvo G., Roper J. A., Hemmons L. M., MacDonalds K. D., Bufton A. W. J.. 1953; The genetics of Aspergillus nidulans. Adv Genet5:141–238
    [Google Scholar]
  28. Prasad R., De Wergifosse P., Goffeau A., Balzi E.. 1995; Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet27:320–329[CrossRef]
    [Google Scholar]
  29. Raeder U., Broda P.. 1985; Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol1:17–20[CrossRef]
    [Google Scholar]
  30. Roe B. A., Kupfer S., Clifton S., Prade R., Dunlap J.. 1998; Aspergillus nidulans and Neurospora crassa cDNA sequencing project (Fifth data release – April 18, 1998). http://www.genome.ou.edu/fungal.html
  31. Romsicki Y., Sharom F. J.. 1998; The ATPase and ATP-binding functions of P-glycoprotein – modulation by interaction with defined phospholipids. Eur J Biochem256:170–178[CrossRef]
    [Google Scholar]
  32. de Ruiter-Jacobs Y. M., Broekhuijsen M., Unkles S. E., Campbell E. I., Kinghorn J. R., Contreras R., Pouwels P. H., van den Hondel C. A.. 1989; A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae. Curr Genet16:159–163[CrossRef]
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A74:5463–5467[CrossRef]
    [Google Scholar]
  34. Sanglard D., Ischer F., Monod M., Bille J.. 1996; Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother40:2300–2305
    [Google Scholar]
  35. Sanglard D., Ischer F., Monod M., Bille J.. 1997; Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology143:405–416[CrossRef]
    [Google Scholar]
  36. Schoonbeek H., Del Sorbo G., De Waard M. A.. 1998; The role of ABC transporters in pathogenesis of Botrytis cinerea. In 12th International Rheinhardsbrunn Symposium pp.143–149 Friedrichroda; Intercept, UK:
    [Google Scholar]
  37. Sharom F. J.. 1997; The P-glycoprotein multidrug transporter: interactions with membrane lipids, and their modulation of activity. Biochem Soc Trans25:1088–1096
    [Google Scholar]
  38. Snedecor G. W., Cochran W. G.. 1989; Statistical Methods, 8th edn. Ames: Iowa State University Press;
    [Google Scholar]
  39. van Tuyl J.. 1977; Genetics of fungal resistance to systemic fungicides. Meded Landbouwhogesch Wagening77:1–136
    [Google Scholar]
  40. Urban M., Bhargava T., Hamer J. E.. 1999; An ATP-driven efflux pump is a novel pathogenicity factor in rice bl ast disease. EMBO J18:512–521[CrossRef]
    [Google Scholar]
  41. Wernars K., Goosen T., Wennekes L. M., Visser J., Bos C. J., van den Broek H. W., van Gorcom R. F., van den Hondel C. A., Pouwels P. H.. 1985; Gene amplification in Aspergillus nidulans by transformation with vectors containing the amdS gene. Curr Genet9:361–368[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-8-1987
Loading
/content/journal/micro/10.1099/00221287-146-8-1987
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error