1887

Abstract

The mechanism(s) that bacteria use to transport haem into and across the cytoplasmic membrane to complete the assembly of periplasmic cytochromes is unknown. The authors have tested directly the role(s) of two ATP-binding cassette (ABC) transporters – the and gene products – in by measuring haem uptake in everted (inside-out) membrane vesicles. If haem is exported to the periplasm , the same process should result in active accumulation in such everted vesicles. [C]Haemin (chloride) with bovine serum albumin (BSA) as a carrier protein was accumulated in intact everted membrane vesicles by an energy-independent mechanism. The kinetics of this process were biphasic: rapid uptake/binding was followed by a slower uptake of haem, which was inhibited by a large excess of unlabelled haemin–BSA, but not by BSA. However, accumulated haemin was not chased out of the vesicles by unlabelled haemin–BSA, suggesting specific binding of haemin with the membrane or transport into the lumen of the vesicle. Neither ATP nor a protonmotive force (Δp) generated by lactate oxidation was required for haemin binding or subsequent transport, and carbonyl cyanide -chlorophenylhydrazone (CCCP), sodium vanadate and monensin had no effect on haemin transport. The rate of haemin uptake following the initial rapid binding was proportional to the external haemin concentration, suggesting that the uptake process was driven by the haemin concentration gradient across the cell membrane. The kinetics of [C]haemin uptake were similar in wild-type and or Δ mutants, suggesting that the activity of neither the CydDC nor CcmAB transporters is essential for haem export to the periplasm. Cytochrome levels were unaffected by mutations in (encoding thioredoxin reductase), (thioredoxin), or grx (glutaredoxin), suggesting that the CydDC transporter does not export these components of reducing pathways for cytochrome assembly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-2-527
2000-02-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/2/1460527a.html?itemId=/content/journal/micro/10.1099/00221287-146-2-527&mimeType=html&fmt=ahah

References

  1. Aguilar G. R., Soberon M.. 1996; Cloning and sequence analysis of the Rhizobium etli ccmA and ccmB genes involved in c-type cytochrome biogenesis. Gene182:129–135[CrossRef]
    [Google Scholar]
  2. Åslund F., Beckwith J.. 1999; The thioredoxin superfamily: redundancy, specificity, and gray-area genomics. J Bacteriol181:1375–1379
    [Google Scholar]
  3. Beaven G. H., Chen S. H., Albis A. D., Gratzer W. B.. 1974; A spectroscopic study of the haemin–human-serum-albumin system. Eur J Biochem41:539–546[CrossRef]
    [Google Scholar]
  4. Bebbington K. J., Williams H. D.. 1993; Investigation of the role of the cydD gene product in production of a functional cytochrome d oxidase in Escherichia coli. FEMS Microbiol Lett112:19–24[CrossRef]
    [Google Scholar]
  5. Beckman D. L., Trawick D. R., Kranz R. G.. 1992; Bacterial cytochrome c biogenesis. Genes Dev6:268–283[CrossRef]
    [Google Scholar]
  6. Bolhuis H., van Veen H. W., Molenaar D., Poolman B., Driessen A. J., Konings W. N.. 1997; Mechanisms of multidrug transporters. FEMS Microbiol Rev21:55–84[CrossRef]
    [Google Scholar]
  7. Cannon J. B., Kuo F.-S., Pasternack R. F., Wong N. M., Muller-Eberhard U.. 1984; Kinetics of the interaction of hemin liposomes with heme binding proteins. Biochemistry23:3715–3721[CrossRef]
    [Google Scholar]
  8. Delaney J. M., Wall D., Georgopoulos C.. 1993; Molecular characterization of the Escherichia coli htrD gene: cloning, sequence, regulation, and involvement with cytochrome d oxidase. J Bacteriol175:166–175
    [Google Scholar]
  9. Gennis R. B., Stewart V.. 1996; Respiration. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn. pp217–261Edited by Niedhardt F. C..others Washington DC: American Society for Microbiology;
    [Google Scholar]
  10. Georgiou C. D., Fang H., Gennis R. B.. 1987; Identification of the cydC locus required for expression of the functional form of the cytochrome d terminal oxidase complex in Escherichia coli. J Bacteriol169:2107–2112
    [Google Scholar]
  11. Goldman B. S., Gabbert K. K., Kranz R. G.. 1996; Use of heme reporters for studies of cytochrome biosynthesis and heme transport. J Bacteriol178:6338–6347
    [Google Scholar]
  12. Goldman B. S., Beckman D. L., Bali A., Monika E. M., Gabbert K. K., Kranz R. G.. 1997; Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol268:724–738[CrossRef]
    [Google Scholar]
  13. Goldman B. S., Beck D. L., Monika E. M., Kranz R. G.. 1998; Transmembrane heme delivery systems. Proc Natl Acad Sci USA95:5003–5008[CrossRef]
    [Google Scholar]
  14. Grove J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J.. 1996; Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol19:467–481[CrossRef]
    [Google Scholar]
  15. Haddock B. A., Schairer H. U.. 1973; Electron transport chains of Escherichia coli Reconstitution of respiration in a δ-aminolaevulinic acid-requiring mutant. Eur J Biochem35:34–45[CrossRef]
    [Google Scholar]
  16. Henderson D. P., Payne S. M.. 1994; Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems. Infect Immun62:5120–5125
    [Google Scholar]
  17. Higgins C. F.. 1992; ABC transporters – from microorganisms to man. Annu Rev Cell Biol8:67–113[CrossRef]
    [Google Scholar]
  18. Higgins C. F., Gottesman M. M.. 1992; Is the multidrug transporter a flippase?. Trends Biochem Sci17:18–21[CrossRef]
    [Google Scholar]
  19. Hrkal Z., Vodrazka Z., Kalousek I.. 1974; Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur J Biochem43:73–78[CrossRef]
    [Google Scholar]
  20. Hwang P. K., Greer J.. 1980; Interaction between hemoglobin subunits in the hemoglobin–haptoglobin complex. J Biol Chem255:3038–3041
    [Google Scholar]
  21. Kita K., Konishi K., Anraku Y.. 1984; Terminal oxidases of Escherichia coli aerobic respiratory chain. I. Purification and properties of cytochrome b 562o complex from cells in the early exponential phase of aerobic growth. J Biol Chem259:3368–3374
    [Google Scholar]
  22. Light W. R., Olson J. S.. 1990; Transmembrane movement of heme. J Biol Chem265:15623–15631
    [Google Scholar]
  23. McConville M. L., Charles H. P.. 1979; Mutants of Escherichia coli K12 impermeable to hemin. J Gen Microbiol113:165–168[CrossRef]
    [Google Scholar]
  24. McMurry L., Petrucci R. E., Levy S. B.. 1980; Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA77:3974–3977[CrossRef]
    [Google Scholar]
  25. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E.. 1978; A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem87:206–210[CrossRef]
    [Google Scholar]
  26. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Osborne J. P., Gennis R. B.. 1999; Sequence analysis of cytochrome bd oxidase suggests a revised topology for subunit I. Biochim Biophys Acta141:32–50
    [Google Scholar]
  28. Page M. D., Pearce D. A., Norris H. A. C., Ferguson S. J.. 1997; The Paracoccus denitrificans ccmA, B and C genes: cloning and sequencing, and analysis of the potential of their products to form a haem or apo- c-type cytochrome transporter. Microbiology143:563–576[CrossRef]
    [Google Scholar]
  29. Poole R. K., Hill S.. 1997; Respiratory protection of nitrogenase activity in Azotobacter vinelandii – roles of the terminal oxidases. Biosci Rep17:303–317[CrossRef]
    [Google Scholar]
  30. Poole R. K., Williams H. D., Downie J. A., Gibson F.. 1989; Mutations affecting the cytochrome d-containing oxidase complex of Escherichia coli K12: identification and mapping of a fourth locus, cydD. J Gen Microbiol135:1865–1874
    [Google Scholar]
  31. Poole R. K., Hatch L., Cleeter M. W. J., Gibson F., Cox G. B., Wu G.. 1993; Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter. Mol Microbiology10:421–430[CrossRef]
    [Google Scholar]
  32. Poole R. K., Gibson F., Wu G.. 1994; The cydD gene product, component of a heterodimeric ABC transporter, is required for assembly of periplasmic cytochrome c and of cytochrome bd in Escherichia coli. FEMS Microbiol Lett117:217–224[CrossRef]
    [Google Scholar]
  33. Pressman B. C.. 1976; Biological applications of ionophores. Annu Rev Biochem45:501–530[CrossRef]
    [Google Scholar]
  34. Raina S., Missiakis D.. 1997; Making and breaking disulfide bonds. Annu Rev Microbiol51:179–202[CrossRef]
    [Google Scholar]
  35. Reid E., Eaves D. J., Cole J. A.. 1998; The CcmE protein from Escherichia coli is a haem-binding protein. FEMS Microbiol Lett166:369–375[CrossRef]
    [Google Scholar]
  36. Rose M. Y., Thompson R. A., Light W. R., Olson J. S.. 1985; Heme transfer between phospholipid membranes and uptake by apohemoglobin. J Biol Chem260:6632–6640
    [Google Scholar]
  37. Rosen B. P., Tsuchiya T.. 1979; Preparation of everted membrane vesicles from Escherichia coli for the measurement of calcium transport. Methods Enzymol56:233–241
    [Google Scholar]
  38. Russel M., Holmgren A.. 1988; Construction and characterization of glutaredoxin-negative mutants of Escherichia coli. Proc Natl Acad Sci USA85:990–994[CrossRef]
    [Google Scholar]
  39. Russel M., Model P.. 1988; Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulfide oxidoreductases. J Biol Chem263:9015–9019
    [Google Scholar]
  40. Russel M., Model P., Holmgren A.. 1990; Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis. J Bacteriol172:1923–1929
    [Google Scholar]
  41. Salmond G. P., Reeves P. J.. 1993; Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci18:7–12[CrossRef]
    [Google Scholar]
  42. Schulz H., Hennecke H., Thony-Meyer L.. 1998; Prototype of a heme chaperone essential for cytochrome c maturation. Science281:1197–1200[CrossRef]
    [Google Scholar]
  43. Schulz H., Fabianek R. A., Pellicioli E. C., Hennecke H., Thony-Meyer L.. 1999; Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc Natl Acad Sci USA96:6462–6467[CrossRef]
    [Google Scholar]
  44. Spinner F., Cheesman M. R., Thomson A. J., Kaysser T., Gennis R. B., Peng Q. Y., Peterson J.. 1995; The haem b(558) component of the cytochrome bd quinol oxidase complex from Escherichia coli has histidine methionine axial ligation. Biochem J308:641–644
    [Google Scholar]
  45. Stewart V., Parales J.. 1988; Identification and expression of genes narL and narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol170:1589–1597
    [Google Scholar]
  46. Stojiljkovic I., Hantke K.. 1992; Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in Gram-negative bacteria. EMBO J11:4359–4367
    [Google Scholar]
  47. Stojiljkovic I., Hantke K.. 1994; Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol13:719–732[CrossRef]
    [Google Scholar]
  48. Stojiljkovic I., Larson J., Hwa V., Anic S., So M.. 1996; HmbR outer membrane receptors of pathogenic Neisseria spp: iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation. J Bacteriol178:4670–4678
    [Google Scholar]
  49. Thanassi D. G., Cheng L. W., Nikaido H.. 1997; Active efflux of bile salts by Escherichia coli. J Bacteriol179:2512–2518
    [Google Scholar]
  50. Thöny-Meyer L.. 1997; Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev61:337–376
    [Google Scholar]
  51. Thöny-Meyer L., Ritz D., Hennecke H.. 1994; Cytochrome c biogenesis in bacteria: a possible pathway begins to emerge. Mol Microbiol12:1–9[CrossRef]
    [Google Scholar]
  52. Throne-Holst M., Thony-Meyer L., Hederstedt L.. 1997; Escherichia coli ccm in-frame deletion mutants can produce periplasmic cytochrome b but not cytochrome c. FEBS Lett410:351–355[CrossRef]
    [Google Scholar]
  53. Tompkins G. R., Wood D. P., Birchmeier K. R.. 1997; Detection and comparison of specific hemin binding by Porphyromonas gingivalis and Prevotella intermedia. J Bacteriol179:620–626
    [Google Scholar]
  54. Torres A. G., Payne S. M.. 1997; Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol23:825–833[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-2-527
Loading
/content/journal/micro/10.1099/00221287-146-2-527
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error