-
Volume 146,
Issue 2,
2000
Volume 146, Issue 2, 2000
- Review Article
-
- Microbiology Comment
-
- Biochemistry
-
-
-
InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II
More LessMost drug-resistant clinical isolates of the tubercle bacillus are resistant to isoniazid, a first-line antituberculous drug. This antibiotic was shown to act on Mycobacterium tuberculosis by inhibiting a 2-trans-enoyl-acyl carrier protein reductase, called InhA. However, the exact role played by InhA in mycobacteria remained unclear. A mycobacterial enzyme fraction containing InhA was isolated. It displays a long-chain fatty acid elongation activity with the characteristic properties described for the FAS-II (fatty acid synthetase II) system. Inhibition of this activity by InhA inhibitors, namely isoniazid, hexadecynoyl-CoA or octadecynoyl-CoA, showed that InhA belongs to the FAS-II system. Moreover, the InhA inhibitors also blocked the biosynthesis of mycolic acids, which are major lipids of the mycobacterial envelope. The data strongly suggest that isoniazid acts on the mycobacterial cell wall by preventing the FAS-II system from producing long-chain fatty acid precursors for mycolic acid biosynthesis.
-
-
-
-
The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein–protein interaction
Inducible overexpression of the CHS4 gene under the control of the GAL1 promoter increased Chs3p (chitin synthase 3) activity in Saccharomyces cerevisiae several fold. Approximately half of the Chs3p activity in the membranes of cells overexpressing Chs4p was extracted using CHAPS and cholesteryl hemisuccinate. The detergent-extractable Chs3p activity appeared to be non-zymogenic because incubation with trypsin decreased enzyme activity in both the presence and absence of the substrate, UDP-N-acetylglucosamine. Western blotting confirmed that Chs3p was extracted from membranes by CHAPS and cholesteryl hemisuccinate and revealed that Chs4p was also solubilized using these detergents. Yeast two-hybrid analysis with truncated Chs4p demonstrated that the region of Chs4p between amino acids 269 and 563 is indispensable not only for eliciting the non-zymogenic activity of Chs3p but also for binding of Chs4p to Chs3p. Neither the EF-hand motif nor a possible prenylation site in Chs4p was required for these activities. Thus, it was demonstrated that stimulation of non-zymogenic Chs3p activity by Chs4p requires the amino acid region from 269 to 563 of Chs4p, and it seems that Chs4p activates Chs3p through protein–protein interaction.
-
-
-
Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved
More LessUnder nitrogen-limiting, secondary metabolic conditions, the lignin-degrading basidiomycete Phanerochaete chrysosporium rapidly degrades pentachlorophenol. The pathway for the degradation of pentachlorophenol has been elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multi-step pathway is initiated by a LiP- or MnP-catalysed oxidative dechlorination reaction to produce tetrachloro-1,4-benzoquinone. Under primary or secondary metabolic conditions, the quinone is further degraded by two parallel pathways with cross-links. The quinone is reduced to tetrachlorodihydroxybenzene, which can undergo four successive reductive dechlorinations to produce 1,4-hydroquinone, and the latter is o-hydroxylated to form the final aromatic metabolite, 1,2,4-trihydroxybenzene. Alternatively, the tetrachloro-1,4-benzoquinone is converted, either enzymically or nonenzymically, to 2,3,5-trichlorotrihydroxybenzene, which undergoes successive reductive dechlorinations to produce 1,2,4-trihydroxybenzene. Finally, at several points, hydroxylation reactions convert chlorinated dihydroxybenzenes to chlorinated trihydroxybenzenes, linking the two pathways at each of these steps. Presumably, the 1,2,4-trihydroxybenzene produced in each pathway is ring-cleaved with subsequent degradation to CO2. In contrast to the oxidative dechlorination step, the reductive dechlorinations and hydroxylations occur during both primary and secondary metabolic growth. Apparently, all five chlorine atoms are removed from the substrate prior to ring cleavage.
-
- Bioenergetics And Transport
-
-
-
Oxidase and periplasmic cytochrome assembly in Escherichia coli K-12: CydDC and CcmAB are not required for haem–membrane association
More LessThe mechanism(s) that bacteria use to transport haem into and across the cytoplasmic membrane to complete the assembly of periplasmic cytochromes is unknown. The authors have tested directly the role(s) of two ATP-binding cassette (ABC) transporters – the cydDC and ccmAB gene products – in Escherichia coli by measuring haem uptake in everted (inside-out) membrane vesicles. If haem is exported to the periplasm in vivo, the same process should result in active accumulation in such everted vesicles. [14C]Haemin (chloride) with bovine serum albumin (BSA) as a carrier protein was accumulated in intact everted membrane vesicles by an energy-independent mechanism. The kinetics of this process were biphasic: rapid uptake/binding was followed by a slower uptake of haem, which was inhibited by a large excess of unlabelled haemin–BSA, but not by BSA. However, accumulated haemin was not chased out of the vesicles by unlabelled haemin–BSA, suggesting specific binding of haemin with the membrane or transport into the lumen of the vesicle. Neither ATP nor a protonmotive force (Δp) generated by lactate oxidation was required for haemin binding or subsequent transport, and carbonyl cyanide m-chlorophenylhydrazone (CCCP), sodium vanadate and monensin had no effect on haemin transport. The rate of haemin uptake following the initial rapid binding was proportional to the external haemin concentration, suggesting that the uptake process was driven by the haemin concentration gradient across the cell membrane. The kinetics of [14C]haemin uptake were similar in wild-type and cydD1 or ΔccmA mutants, suggesting that the activity of neither the CydDC nor CcmAB transporters is essential for haem export to the periplasm. Cytochrome d levels were unaffected by mutations in trxB (encoding thioredoxin reductase), trxA (thioredoxin), or grx (glutaredoxin), suggesting that the CydDC transporter does not export these components of reducing pathways for cytochrome assembly.
-
-
- Biotechnology
-
-
-
Microbiological and molecular impacts of AbiK on the lytic cycle of Lactococcus lactis phages of the 936 and P335 species
More LessThe lactococcal abortive infection mechanism AbiK was previously shown to be highly effective against the small isometric-headed bacteriophage ul36 of the P335 species, as evidenced by an efficiency of plaquing (e.o.p.) of 10−6, a 14-fold reduction in the burst size and an efficiency at which centres of infection form (e.c.o.i.) of 0·5%. No phage DNA was detected in the infected AbiK+ cells [Émond, É., Holler, B. J., Boucher, I., Vandenbergh, P. A., Vedamuthu, E. R., Kondo, J. K. & Moineau, S. (1997) R15 . Appl Environ Microbiol 63, 1274–1283]. Here, the effects of AbiK are compared on the small isometric-headed phages p2 and P008 (936 species) and on the phage P335 (P335 species). The microbiological impacts of AbiK on p2 were relatively similar to those reported for ul36, with an e.o.p. of 10−6, an 11-fold reduction in the burst size and an e.c.o.i. of 5%. Contrary to phage ul36, replication of phage p2 DNA was observed in the AbiK+ cells. Only immature forms (concatemeric and circular DNA) of phage p2 DNA were found, indicating that the presence of AbiK prevented phage DNA maturation. These distinct molecular consequences of AbiK were also observed for phages P335 and P008, two phages that propagate on the same host. To the knowledge of the authors, this is the first time that different phage responses towards an Abi system have been reported.
-
-
- Environmental Microbiology
-
-
-
Identification and characterization of anaerobic gut fungi using molecular methodologies based on ribosomal ITS1 and 18S rRNA
More LessThe GenBank accession numbers for the sequences determined in this work are given in Methods.
The gut fungi are an unusual group of zoosporic fungi occupying a unique ecological niche, the anaerobic environment of the rumen. They exhibit two basic forms, with nuclear migration throughout the hyphal mass for polycentric species and with concentration of nuclear material in a zoosporangium for monocentric species. Differentiation between isolates of these fungi is difficult using conventional techniques. In this study, DNA-based methodologies were used to examine the relationships within and between two genera of monocentric gut fungi gathered from various geographical locations and host animals. The ribosomal ITS1 sequence from 16 mono- and 4 polycentric isolates was PCR-amplified and sequenced; the sequences obtained were aligned with published sequences and phylogenetic analyses were performed. These analyses clearly differentiate between the two genera and reflect the previously published physiological conclusions that Neocallimastix spp. constitute a more closely related genus than the relatively divergent genus Piromyces. The analyses place two type species N. frontalis and N. hurleyensis together but, contrary to a recent suggestion in the literature, place them apart from the other agreed species N. patriciarum. In situ hybridization and slot-blotting were investigated as potential methods for detection of and differentiation between monocentric gut fungi. DNA slot-blot analysis using ribosomal sequences is able to differentiate between gut fungal genera and thus has considerable potential for use in ecological studies of these organisms.
-
-
- Genetics And Molecular Biology
-
-
-
Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis
More LessTransport systems for C4-dicarboxylates, such as malate, fumarate and succinate, are poorly understood in Gram-positive bacteria. The whole genome sequence of Bacillus subtilis revealed two genes, ydbE and ydbH, whose deduced products are highly homologous to binding proteins and transporters for C4-dicarboxylates in Gram-negative bacteria. Between ydbE and ydbH, genes ydbF and ydbG encoding a sensor–regulator pair, were located. Inactivation of each one of the ydbEFGH genes caused a deficiency in utilization of fumarate or succinate but not of malate. Expression of ydbH, encoding a putative transporter, was stimulated in a minimal salt medium containing 0·05% yeast extract but repressed by the addition of malate to the medium. Inactivation of the putative sensor–regulator pair or solute-binding protein, ydbFG or ydbE, caused complete loss of ydbH expression. The utilization of fumarate and stimulation of ydbH expression resumed in a ydbE null mutant in which ydbFGH were overproduced. Based on these observations, together with analysis of the sequence similarities of the deduced product, we conclude that YdbH is a C4-dicarboxylate-transport protein and its expression is regulated by a C4-dicarboxylate sensor kinase–regulator pair, YdbF and YdbG. Furthermore, it is suggested that YdbE does not directly participate in transport of C4-dicarboxylates, but plays a sensory role in the ydbF–ydbG two-component system, giving rise to specificity or increased efficiency to the system. Deletion analysis of the promoter region of ydbH revealed that a direct repeat sequence was required for the activation of ydbH expression. A catabolite-responsive element (CRE) was also found in the −10 region of the promoter, suggesting negative regulation by a CRE-binding protein.
-
-
-
-
S-layer gene sbsC of Bacillus stearothermophilus ATCC 12980: molecular characterization and heterologous expression in Escherichia coli
More LessThe GenBank accession number for the sequence described in this paper is AF055578.
The cell surface of Bacillus stearothermophilus ATCC 12980 is completely covered with an oblique S-layer lattice. To investigate sequence identities and a common structure–function relationship in S-layer proteins of different B. stearothermophilus wild-type strains, the nucleotide sequence encoding theS-layer protein SbsC of B. stearothermophilus ATCC 12980 was determined by PCR techniques. The entire sbsC sequence showed an ORF of 3297 bp predicted to encode a protein of 1099 aa with a theoretical molecular mass of 115409 Da and an isoelectric point of 5·73. Primer extension analysis suggested the existence of two promoter regions. Amino acid sequence comparison between SbsC and SbsA, a previously characterized S-layer protein of B. stearothermophilus PV72/p6 which assembles into a hexagonally ordered lattice, revealed an identical secretion signal peptide, 85% identity for theN-terminal regions (aa 31–270) which do not carry any S-layer homologous motifs, but only 21% identity for the rest of the sequences. Affinity studies demonstrated that the N-terminal part of SbsC is necessary for recognition of a secondary cell wall polymer. This was in accordance with results obtained in a previous study for SbsA, thus confirming a common functional principle for the N-terminal parts of both S-layer proteins. The sbsC coding region cloned into the pET3a vector without its own upstream region, the signal sequence and the 3′ transcriptional terminator led to stable expression in Escherichia coli.
-
-
-
A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon
The EMBL accession number for the sequence determined in this work is AJ238973.
A 9·2 kb cryptic Mycobacterium fortuitum plasmid, pMF1, was isolated from strain 110 and its restriction map constructed. A 4·2 kb HindIII fragment of pMF1 was found to support replication in mycobacteria and this fragment was cloned and sequenced to characterize the replication elements of the plasmid. Computer analysis identified a putative Rep protein (362 amino acids) with high homology to the putative Rep protein of the Mycobacterium celatum plasmid pCLP and limited homology, mostly in the N-terminal region, to the Rep proteins of Mycobacterium avium pLR7, M. fortuitum pJAZ38 and Mycobacterium scrofulaceum pMSC262. A region containing a putative ori site was located upstream of the rep gene; this region displayed high homology at the nucleotide level with the predicted ori of pCLP and pJAZ38. A plasmid carrying the 4·2 kb HindIII fragment and a kanamycin resistance marker, designated pBP4, was maintained as a single-copy plasmid in Mycobacterium smegmatis and was stably inherited in the absence of antibiotic selection. Plasmid pBP4 was incompatible with the pJAZ38 replicon but was compatible with the widely used pAL5000 replicon, indicating that among the mycobacterial vectors now available there are two incompatibility groups. Significantly, the plasmid was able to replicate in the pathogen Mycobacterium tuberculosis, making it a useful tool for gene expression studies. To provide a choice of restriction sites and easy manipulation, a 2·1 kb fragment containing the minimal replication region was cloned to make the mycobacterial shuttle vector pBP10, which showed similar stability to pBP4.
-
-
-
Analysis of the internal replication region of a mycobacterial linear plasmid
More LessThe GenBank accession number for the nucleotide sequence and putative ORFs of the replication origin region of pCLP determined in this work is AF144883.
Linear plasmids have previously been identified by the authors in mycobacteria, the telomeres of which have terminal inverted repeats and covalently attached proteins. In this study, the replication of these unusual molecules was investigated by studying a 25 kb linear plasmid from the slow-growing species Mycobacterium celatum called pCLP. An internal region of pCLP responsible for replication in Mycobacterium smegmatis was identified. The nucleotide sequence of the minimum replication region of pCLP, which was 2·8 kb long, contained a putative replication gene, rep, and a putative origin of replication consisting of an 18 bp direct repeat and an AT-rich region. A short section of the pCLP replication region was also found to have sequence identity with the replication regions of mycobacterial circular plasmids, suggesting that these linear and circular plasmids are related. It was found that pCLP replicated in Mycobacterium bovis BCG and was compatible in M. smegmatis with pAL5000- and pJAZ38-derived plasmids from Mycobacterium fortuitum, which belong to two different compatibility groups. Thus, this new Escherichia coli–mycobacteria shuttle vector may be used in both slow- and fast-growing mycobacteria and in co-transformation experiments with other mycobacterial vectors.
-
-
-
Cryptosporidium parvum appears to lack a plastid genome
More LessSurprisingly, unlike most Apicomplexa, Cryptosporidium parvum appears to lack a plastid genome. Primers based upon the highly conserved plastid small- or large-subunit rRNA (SSU/LSU rRNA) and the tufA-tRNAPhe genes of other members of the phylum Apicomplexa failed to amplify products from intracellular stages of C. parvum, whereas products were obtained from the plastid-containing apicomplexans Eimeria bovis and Toxoplasma gondii, as well as the plants Allium stellatum and Spinacia oleracea. Dot-blot hybridization of sporozoite genomic DNA (gDNA) supported these PCR results. A T. gondii plastid-specific set of probes containing SSU/LSU rRNA and tufA-tRNAPhe genes strongly hybridized to gDNA from a diverse group of plastid-containing organisms including three Apicomplexa, two plants, and Euglena gracilis, but not to those without this organelle including C. parvum, three kinetoplastids, the yeast Saccharomyces cerevisiae, mammals and the eubacterium Escherichia coli. Since the origin of the plastid in other apicomplexans is postulated to be the result of a secondary symbiogenesis of either a red or a green alga, the most parsimonious explanation for its absence in C. parvum is that it has been secondarily lost. If confirmed, this would indicate an alternative evolutionary fate for this organelle in one member of the Apicomplexa. It also suggests that unlike the situation with other diseases caused by members of the Apicomplexa, drug development against cryptosporidiosis targeting a plastid genome or metabolic pathways associated with it may not be useful.
-
-
-
A novel valanimycin-resistance determinant (vlmF) from Streptomyces viridifaciens MG456-hF10
More LessThe GenBank accession number for the sequence in this paper is AF148322.
A novel valanimycin-resistance determinant (vlmF) was isolated from a cosmid containing Streptomyces viridifaciens DNA that leads to valanimycin production in Streptomyces lividans. Expression of the vlmF gene in both Escherichia coli and S. lividans provided valanimycin resistance. The nucleotide sequence of vlmF consists of 1206 bp and the deduced amino acid sequence encodes a polypeptide with 12 putative transmembrane-spanning segments and a calculated pI of 10·1. VlmF shows significant similarities to other known or putative transmembrane efflux proteins that confer antibiotic resistance, but it appears to be specific for valanimycin. The sequence similarities suggest that VlmF is a member of the DHA12 family within the major facilitator superfamily of transport proteins and that it is probably involved in active valanimycin efflux energized by a proton-dependent electrochemical gradient.
-
-
-
Single allele knock-out of Candida albicans CGT1 leads to unexpected resistance to hygromycin B and elevated temperature
Almost all eukaryotic mRNAs are capped at their 5′-terminus. Capping is crucial for stability, processing, nuclear export and efficient translation of mRNA. We studied the phenotypic effects elicited by depleting a Candida albicans strain of mRNA 5′-guanylyltransferase (mRNA capping enzyme; CGT1). Construction of a Cgt1-deficient mutant was achieved by URA-blaster-mediated genetic disruption of one allele of the CGT1 gene, which was localized on chromosome III. The resulting heterozygous mutant exhibited an aberrant colony morphology resembling the ‘irregular wrinkle’ phenotype typically obtained from a normal C. albicans strain upon mild UV treatment. Its level of CGT1 mRNA was reduced two- to fivefold compared to the parental strain. Proteome analysis revealed a large number of differentially expressed proteins confirming the expected pleiotropic effect of CGT1 disruption. The disrupted strain was significantly more resistant to hygromycin B, an antibiotic which decreases translational fidelity, and showed increased resistance to heat stress. Proteome analysis revealed a 50-fold overexpression of Ef-1αp and a more than sevenfold overexpression of the cell-wall heat-shock protein Ssa2p. Compared to a reference strain, the cgt1/CGT1 heterozygote was equally virulent for mice and guinea pigs when tested in an intravenous infection model of disseminated candidiasis.
-
-
-
Very low amounts of glucose cause repression of the stress-responsive gene HSP12 in Saccharomyces cerevisiae
More LessChanging the growth mode of Saccharomyces cerevisiae by adding fermentable amounts of glucose to cells growing on a non-fermentable carbon source leads to rapid repression of general stress-responsive genes like HSP12. Remarkably, glucose repression of HSP12 appeared to occur even at very low glucose concentrations, down to 0·005%. Although these low levels of glucose do not induce fermentative growth, they do act as a growth signal, since upon addition of glucose to a concentration of 0·02%, growth rate increased and ribosomal protein gene transcription was up-regulated. In an attempt to elucidate how this type of glucose signalling may operate, several signalling mutants were examined. Consistent with the low amounts of glucose that elicit HSP12 repression, neither the main glucose-repression pathway nor cAMP-dependent activation of protein kinase A appeared to play a role in this regulation. Using mutants involved in glucose metabolism, evidence was obtained suggesting that glucose 6-phosphate serves as a signalling molecule. To identify the target for glucose repression on the promoter of the HSP12 gene, a promoter deletion series was used. The major transcription factors governing (stress-induced) transcriptional activation of HSP12 are Msn2p and Msn4p, binding to the general stress-responsive promoter elements (STREs). Surprisingly, glucose repression of HSP12 appeared to be independent of Msn2/4p: HSP12 transcription in glycerol-grown cells was unaffected in a Δmsn2Δmsn4 strain. Nevertheless, evidence was obtained that STRE-mediated transcription is the target of repression by low amounts of glucose. These data suggest that an as yet unidentified factor is involved in STRE-mediated transcriptional regulation of HSP12.
-
-
-
Molecular characterization of the lactococcal plasmid pCIS3: natural stacking of specificity subunits of a type I restriction/modification system in a single lactococcal strain
More LessThe GenBank accession numbers for the sequences reported in this paper are AF153410–AF153414.
A 6·1 kb plasmid from the Lactococcus lactis subsp. cremoris strain UC509.9, named pCIS3, was found to mediate a restriction/modification (R/M) phenotype. Nucleotide sequence analysis of pCIS3 revealed the presence of an hsdS gene, typical of type I R/M systems. The presence of this plasmid resulted in a 104-fold reduction in the efficiency of plating (e.o.p.) of unmodified phage. In addition to the hsdS gene of pCIS3, two more hsdS genes were identified in strain UC509.9, one located on the chromosome downstream of a gene highly homologous to hsdM genes and a third on the smallest (4 kb) plasmid, named pCIS1. The replication region of pCIS3 was highly similar to that of a large family of lactococcal theta replicons. In addition, pCIS3 was found to encode a member of the CorA family of magnesium transporters.
-
-
-
Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043
The EMBL accession number for the sequence reported in this paper is AJ238780.
The genes involved in the oxidative pathway of choline to glycine betaine in the moderate halophile Halomonas elongata DSM 3043 were isolated by functional complementation of an Escherichia coli strain defective in glycine betaine synthesis. The cloned region was able to mediate the oxidation of choline to glycine betaine in E. coli, but not the transport of choline, indicating that the gene(s) involved in choline transport are not clustered with the glycine betaine synthesis genes. Nucleotide sequence analysis of a 4·6 kb segment from the cloned DNA revealed the occurrence of three ORFs (betIBA) apparently arranged in an operon. The deduced betI gene product exhibited features typical for DNA-binding regulatory proteins. The deduced BetB and BetA proteins showed significant similarity to soluble glycine betaine aldehyde dehydrogenases and membrane-bound choline dehydrogenases, respectively, from a variety of organisms. Evidence is presented that BetA is able to oxidize both choline and glycine betaine aldehyde and therefore can mediate both steps in the synthesis of glycine betaine.
-
-
-
Catalase deficiency in Staphylococcus aureus subsp. anaerobius is associated with natural loss-of-function mutations within the structural gene
The GenBank accession numbers for the sequences reported in this paper are AJ000472 (S. aureus ATCC 12600 katA) and AJ000471 (S. aureus subsp. anaerobius MVF 213 katB).
Degenerate oligonucleotide primers based on internal peptide sequences obtained by HPLC from purified Staphylococcus aureus catalase were used to locate the S. aureus and S. aureus subsp. anaerobius kat regions by PCR. Southern hybridization analysis with a probe derived from a 1·1 kb PCR-amplified fragment showed that a single copy of the putative catalase gene was present in the S. aureus and S. aureus subsp. anaerobius chromosome. The nucleotide sequence of S. aureus katA revealed a 1518 bp open reading frame for a protein with 505 amino acids and a predicted molecular mass of 58347 Da, whereas S. aureus subsp. anaerobius katB is 1368 nt long and encodes a polypeptide of 455 amino acids with a predicted molecular mass of 52584 Da. These catalases are highly homologous to typical monofunctional catalases from prokaryotes. The active-site residues, proximal and distal haem-binding ligands and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in S. aureus KatA. Escherichia coli cells carrying cloned katA had a catalase activity approximately 1000 times that of untransformed E. coli, but no detectable increase in catalase activity was observed with E. coli carrying cloned katB. Northern blotting showed the presence of a kat-specific transcript in S. aureus subsp. anaerobius, suggesting that the lack of catalase activity in this bacterium is due to a post-transcriptional alteration. Compared to the nucleotide sequence of katA, katB showed a single base-pair deletion and six mis-sense mutations, and these alterations were present in three other S. aureus subsp. anaerobius strains analysed. The deletion, located at 1338 bp from the initiation codon, originates a shift of the nucleotide reading frame and is responsible for the premature translation termination at 1368 bp, generating a KatB polypeptide 50 amino acid residues shorter than KatA. Moreover, four of the mis-sense mutations present in katB lead to non-conservative amino acid replacements, the most significant being that located at residue 317 (Pro in KatA→Ser in KatB) because the affected amino acid is involved in determining the proximal haem-binding site. Both the main alterations found in KatB (the deletion and the substitution in residue 317) seem to contribute to the lack of catalase activity in S. aureus subsp. anaerobius, as deduced from results obtained with chimeric catalase constructs.
-
-
-
The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus
More LessThe GenBank accession number for the sequence reported in this paper is U57100.
Erythritol utilization is a characteristic of pathogenic Brucella abortus strains. The attenuated vaccine strain B19 is the only Brucella strain that is inhibited by erythritol, so a role for erythritol metabolism in virulence is suspected. A chromosomal fragment from the pathogenic strain B. abortus 2308 containing genes for the utilization of erythritol was cloned taking advantage of an erythritol-sensitive Tn5 insertion mutant. The nucleotide sequence of the complete 7714 bp fragment was determined. Four ORFs were identified in the sequence. The four genes were closely spaced, suggesting that they were organized as a single operon (the ery operon). The first gene (eryA) encoded a 519 aa putative erythritol kinase. The second gene (eryB) encoded an erythritol phosphate dehydrogenase. The function of the third gene (eryC) product was tentatively assigned as D-erythrulose-1-phosphate dehydrogenase and the fourth gene (eryD) encoded a regulator of ery operon expression. The operon promoter was located 5′ to eryA, and contained an IHF (integration host factor) binding site. Transcription from this promoter was repressed by EryD, and stimulated by erythritol. Functional IHF was required for expression of the operon in Escherichia coli, suggesting a role for IHF in its regulation in B. abortus. The results obtained will be helpful in clarifying the role of erythritol metabolism in the virulence of Brucella spp.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
