1887

Abstract

The hydrophobic probe -phenyl-1-naphthylamine accumulated less in nonpathogenic spp. and non-pathogenic and pathogenic than in or This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in and The probe accumulation rate was higher in and grown at 37 °C than at 26 °C and was always highest in These yersiniae had LPSs with shorter polysaccharides than particularly when grown at 37 °C. Gel liquid-crystalline phase transitions (T 28–31 °C) were observed in LPS aggregates of grown at 26 and 37 °C, with no differences between nonpathogenic and pathogenic strains. and LPSs showed no phase transitions and, although the fluidity of LPSs of and grown at 26 °C were close below the T of the latter, they were always in a more fluid state than LPS. Comparison with previous studies of subsp. serotype minnesota rough LPS showed that the increased fluidity and absence of transition of and LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of spp. to different habitats.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-6-1517
1998-06-01
2021-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/6/mic-144-6-1517.html?itemId=/content/journal/micro/10.1099/00221287-144-6-1517&mimeType=html&fmt=ahah

References

  1. R, Moriyon, I. (1996); Outer membrane differences between pathogenic and environmental Yersinia enterocolitica biogroups probed with hydrophobic permeants and polycationic peptides.. Infection and Immunity, 64,:4891–4899
    [Google Scholar]
  2. Bercovier, H., Mollaret, H. H. (1984) Genus XIV. Yersinia Van Loghem 1944, 15AL.. Edited by Krieg, N. R., Holt, J. G. In, Bergey’s Manual of Systematic Bacteriology. vol. 1: London:: Williams & Wilkins,;498–506
    [Google Scholar]
  3. Berger, E. A. (1973); Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli.. Proc Natl Acad Sci USA, 70,:1514–1518
    [Google Scholar]
  4. Brandenburg, K., Seydel, U. (1984); Physical aspects of structure and function of membranes made from lipopolysaccharides and free lipid A.. Biochimica Et Biophysica Acta, 775,:225–238
    [Google Scholar]
  5. Brandenburg, K., Seydel U. (1990); Investigation into the fluidity of lipopolysaccharide and free lipid A membrane systems by Fourier-transform infrared spectroscopy and differential scanning calorimetry.. European Journal of Biochemistry, 191,:229–236
    [Google Scholar]
  6. Brubaker, R. R. (1991); Factors promoting acute and chronic diseases caused by yersiniae.. Clinical Microbiology Reviews, 4,:309–324
    [Google Scholar]
  7. Casal, H. L., Mantsch, H. H. (1984); Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy.. Biochimica Et Biophysica Acta, 779,:381–4–01
    [Google Scholar]
  8. Cornells, G. R., Wolf-Watz, H. (1997); The Yersinia Yop virulon : a bacterial system for subverting eukaryotic cells.. Molecular Microbiology, 23,:861–867
    [Google Scholar]
  9. Díaz-Aparicio, E., Aragón V., Marín, C., Alonso, B., Font, M., Moreno, E., Pérez-Ortiz, S., Blasco, J. M., Dlaz, R., Moriydn, I. (1993); Comparative analysis of Brucella serotype A and M and Yersinia enterocolitica 0: 9 polysaccharides for serological diagnosis of brucellosis in cattle, sheep and goats.. Journal of Clinical Microbiology, 31,:3136–3141
    [Google Scholar]
  10. Freer, E., Moreno, E., Moriydn, I., Pizarro-CerdS, J., Weintraub, A., Gorvel J. P. (1996); Brucella/Salmonella-lipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive to cationic peptides and EDTA than their native Brucella spp.. counterparts. ] Bacteriol, 178,:5867–5876
    [Google Scholar]
  11. Hancock, R. E. W. (1984); Alterations in outer membrane permeability.. Annual Review of Microbiology, 38,:237–264
    [Google Scholar]
  12. Hancock, R. E. W. (1997); The bacterial outer membrane as a drug barrier.. Trends in Microbiology, 5,:37–32
    [Google Scholar]
  13. Hancock, R. E. W., Braun, V. (1976); Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and phi80 to Escherichia coli.. Journal of Bacteriology, 125,:409–415
    [Google Scholar]
  14. Hartley, J. L., Adams, G. A., Tornabene T. G. (1974); Chemical and physical properties of lipopolysaccharide of Yersinia pestis.. Journal of Bacteriology, 118,:848–854
    [Google Scholar]
  15. Helgerson, S. L., Cramer W. A. (1977); Changes in Escherichia coli cell envelope structure and the sites of fluorescence probe binding caused by carbonyl cyanide p-trifluoromethoxyphenyl- hydrazone.. Biochemistry, 16,:4109–4116
    [Google Scholar]
  16. Hitchcock, P., Leive, L., Mgkela, P. H., Rietschel, E. T., Strittmatter, W., Morrison D. C. (1986); Lipopolysaccharide nomenclature.. Past, present and future. J Bacteriol, 166,:699–705
    [Google Scholar]
  17. Hoffman, J., Lindberg, B., Brubaker, R. R. (1980); Structural studies on the O-specific side-chains of the lipopolysaccharide from Yersinia enterocolitica Ye 128.. Carbohydr Res, 78,:212–214
    [Google Scholar]
  18. Loh, B., Grant, C., Hancock R. E. W. (1984); Use of the fluorescent probe 1-N-phenylnaphthylamine to study the interactions of aminoglycoside antibiotics with the outer membrane of Pseudomonas aeruginosa.. Antimicrob Agents Chemother, 26,:546–551
    [Google Scholar]
  19. M3ki, M., Vesikari, T., Rantala, I., Sundquist, C., Grdnroos P. (1983); Pathogenicity of 42-44 Mdal plasmid positive and negative Yersinia pseudotuberculosis I and Yersinia enterocolitica 0: 8 and 0: 9 studied in the guinea pig eye model (Sereny test).. Acta Pathol Microbiol Immunol Scand, 91,:241–244
    [Google Scholar]
  20. Markwell, M. A. K., Haas, S. M., Bieber, L. L., Tolbert N. E. (1978); A modification of the Lowry procedure to simplify protein determination in membrane lipoprotein samples.. Analytical Biochemistry, 87,:206–210
    [Google Scholar]
  21. Martinez de Tejada G., Moriyón I. (1993); The outer membranes of Brucella spp. are not barriers to hydrophobic permeants.. ] Bacteriol, 175,:5273–5275
    [Google Scholar]
  22. Nikaido, H. (1976); Outer membrane of Salmonella typhimurium. Transmembrane diffusion of some hydrophobic substances.. Biochimica Et Biophysica Acta, 433,:118–132
    [Google Scholar]
  23. Nikaido, H. (1994); Prevention of drug access to bacterial targets: permeability barriers and active efflux.. Science, 264,:382–388
    [Google Scholar]
  24. Nikaido, H. (1996); Multidrug efflux pumps of Gram-negative bacteria.. Journal of Bacteriology, 178,:5853–5859
    [Google Scholar]
  25. Nikaido, H., Vaara M. (1985); Molecular basis of bacterial outer membrane permeability.. Microbiological Reviews, 49,:1–32
    [Google Scholar]
  26. Pepe, J. C., Miller V. L. (1993); Yersinia enterocolitica invasin: a primary role in the initiation of infection.. Proc Natl Acad Sci USA, 90,:6473–6477
    [Google Scholar]
  27. Riley, G., Toma, S. (1989); Detection of pathogenic Yersinia enterocolitica by using Congo red-magnesium oxalate agar medium.. Journal of Clinical Microbiology, 27,:213–214
    [Google Scholar]
  28. Rosqvist, R., Skurnik, M., Wolf-Waltz, H. (1988); Increased virulence of Yersinia pseudotuberculosis by two independent mutations.. Nature, 334,:522–525
    [Google Scholar]
  29. Samuelsson, K., Lindberg, B., Brubaker R. R. (1973); Structure of O-specific chains of lipopolysaccharides from Yersinia pseudotuberculosis.. Journal of Bacteriology, 117,:1010–1016
    [Google Scholar]
  30. Seydel, U., Koch, M. H. J., Brandenburg K. (1993); Structural polymorphism of rough mutant lipopolysaccharides Rd to Ra from Salmonella minnesota.. Journal of Structural Biology, 110,:232–243
    [Google Scholar]
  31. Sprott, G. D., Koval, S. F., Schnaitman C. A. (1994) Cell fractionation.. Edited by Gerhardt, P., Murray, R. G. E., Boot, W. A., Krieg, N. R. Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology,;72–103
    [Google Scholar]
  32. Straley, S. C., Harmon, P. A. (1984a); Growth in mouse peritoneal macrophages of Yersinia pestis lacking established virulence determinants.. Infection and Immunity, 45,:649–654
    [Google Scholar]
  33. Straley, S. C., Harmon, P. A. (1984b); Yersinia pestis grows within phagolysosomes in mouse peritoneal macrophages.. Infection and Immunity, 45,:655–659
    [Google Scholar]
  34. Straley, S. C., Perry R. (1995); Environmental modulation of gene expression and pathogenesis in Yersinia.. Trends in Microbiology, 3,:310–317
    [Google Scholar]
  35. Thiele, O. W., Schwinn G. (1973); The free lipids of Brucella melitensis and Bordetella pertussis.. European Journal of Biochemistry, 34,:333–344
    [Google Scholar]
  36. Tomshich, S. V., Gorshkova, R. P., Ovodov, Y. S, (1987); Structure studies on lipopolysaccharide from Y.. enterocolitica serovar, 0,:8 Kbim Prir Soedin 657-664.
    [Google Scholar]
  37. Trouble, H., Overath, P. (1973); The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions.. Biochimica Et Biophysica Acta, 307,:491–512
    [Google Scholar]
  38. Tsai, C.-M., Frasch, C. E. (1982); A sensitive silver stain for detecting lipopolysaccharide in polyacrylamide gels.. Analytical Biochemistry, 119,:115–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-6-1517
Loading
/content/journal/micro/10.1099/00221287-144-6-1517
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error