- Volume 144, Issue 6, 1998
Volume 144, Issue 6, 1998
- Sgm Special Lecture
-
-
-
Taking a genetic scalpel to the Streptomyces colony
More Less1997 Fred Griffith Review Lecture
(Delivered at the 138th Meeting of the Society for General Microbiology, 2 September 1977)
-
-
- Microbiology Comment
-
- Bioenergetics And Transport
-
-
-
Insertion mutagenesis of XpsD, an outer-membrane protein involved in extracellular protein secretion in Xanthomonas campestris pv. campestris
More LessXpsD is an outer-membrane protein required for extracellular protein secretion in Xanthomonas campestris pv. campestris. Cross-linking and gel-filtration chromatography analyses have suggested that it forms a multimer. To determine its structure-function relationship, linker-insertion mutants were constructed in an xpsD gene carried on a plasmid. To assay for secretion function, each mutant gene was introduced into an xpsD::Tn5 mutant strain (XC1708) and assayed for α-amylase secretion on starch plates. To test whether the mutant genes exerted a dominant-negative effect, each was introduced into the parental strain XC1701 and examined for secretion interference. Nine functional, one semi-functional and eleven non-functional mutants were obtained. All the non-functional mutants, except two for which the mutant proteins were undetectable on immunoblots, showed interference of normal secretion. The insertion sites in the different mutant proteins are randomly distributed throughout the entire sequence of the XpsD protein. All the permissive insertion sites are located where β-turn or coiled secondary structure is predicted. Over half of the non-permissive sites are located within predicted helical or β-sheet regions. By pretreating total membranes of XC1701 in SDS at 50 °C, an immunoreactive band with high molecular mass (HMM) could be detected that remained in the stacking gel during SDS-PAGE. The semi-functional and all functional mutant proteins formed HMM complexes that were as SDS-resistant as those of the wild-type, whereas all except three of the non-functional mutant proteins formed HMM structures that were less resistant to SDS than the wild-type. By analysing the appearance of SDS-resistant HMM complexes, we were able to detect conformational alterations in XpsD that are too subtle to be detected by other assays.
-
-
- Environmental Microbiology
-
-
-
Yersinia pseudotuberculosis and Yersinia pestis are more resistant to bactericidal cationic peptides than Yersinia enterocolitica
More LessThe action of bactericidal polycationic peptides was compared in Yersinia spp. by testing peptide binding to live cells and changes in outer membrane (OM) morphology and permeability. Moreover, polycation interaction with LPS was studied by measuring the dependence of dansylcadaverine displacement and zeta potential on polycation concentration. When grown at 37 °C, Yersinia pestis and Yersinia pseudotuberculosis bound less polymyxin B (PMB) than pathogenic or non-pathogenic Yersinia enterocolitica, regardless of virulence plasmid expression. Y. pseudotuberculosis OMs were unharmed by PMB concentrations causing extensive OM blebbing in Y. enterocolitica. The permeability to Iysozyme caused by PMB was greater in Y. enterocolitica than in Y. pseudotuberculosis or Y. pestis and differences increased at 37 °C. Similar observations were made with other polycations using a polymyxin/novobiocin permeability assay. With LPS of cells grown at 26 °C, polycation binding was highest for Y. pseudotuberculosis and lowest for Y. pestis, with Y. enterocolitica yielding intermediate results which were lower for pathogenic than for non-pathogenic strains. With LPS of cells grown at 37 °C, polycation binding remained unchanged for Y. pastis and pathogenic Y. enterocolitica, increased for non-pathogenic Y. enterocolitica and decreased for Y. pseudotuberculosis to Y. pestis levels. Polycation binding related in part to differences in charge density (zeta potential) of LPS aggregates, suggesting similar effects at bacterial surfaces. It is suggested that species and temperature differences in polycation resistance relate to infection route, invasiveness and intracellular multiplication of Yersinia spp.
-
-
-
-
Yersinia pseudotuberculosis and Yersinia pestis show increased outer membrane permeability to hydrophobic agents which correlates with lipopolysaccharide acyl-chain fluidity
More LessThe hydrophobic probe N-phenyl-1-naphthylamine accumulated less in nonpathogenic Yersinia spp. and non-pathogenic and pathogenic Yersinia enterocolitica than in Yersinia pseudotuberculosis or Yersinia pestis. This was largely due to differences in the activity of efflux systems, but also to differences in outer membrane permeability because uptake of the probe in KCN/arsenate-poisoned cells was slower in the former group than in Y. pseudotuberculosis and Y. pestis. The probe accumulation rate was higher in Y. pseudotuberculosis and Y. pestis grown at 37 °C than at 26 °C and was always highest in Y. pestis. These yersiniae had LPSs with shorter polysaccharides than Y. enterocolitica, particularly when grown at 37 °C. Gel liquid-crystalline phase transitions (Tc 28–31 °C) were observed in LPS aggregates of Y. enterocolitica grown at 26 and 37 °C, with no differences between nonpathogenic and pathogenic strains. Y. pseudotuberculosis and Y. pestis LPSs showed no phase transitions and, although the fluidity of LPSs of Y. pseudotuberculosis and Y. enterocolitica grown at 26 °C were close below the Tc of the latter, they were always in a more fluid state than Y. enterocolitica LPS. Comparison with previous studies of Salmonella choleraesuis subsp. choleraesuis serotype minnesota rough LPS showed that the increased fluidity and absence of transition of Y. pseudotuberculosis and Y. pestis LPSs cannot be explained by their shorter polysaccharides and suggested differences at the lipid A/core level. It is proposed that differences in LPS-LPS interactions and efflux activity explain the above observations and reflect the adaptation of Yersinia spp. to different habitats.
-
-
-
Lipopolysaccharide expression within the genus Bordetella: influence of temperature and phase variation
More LessLPSs play an important role in bacterial pathogenesis. In this study, the LPS expression of the seven known Bordetella species and its dependency on growth temperature was analysed by oxidative silver staining of proteinase-K-treated whole bacteria separated by Tricine-SDS-PAGE. The bordetellae were found to have extensively variable LPS in a species-specific way. In addition, the human and ovine Bordetella parapertussis strains exhibited host-specific LPS expression. LPSs from human B. parapertussis strains grown at 37 and 25 °C were distinct. Growth temperature also affected LPS production by several Bordetella bronchiseptica strains. In some of these cases, BvgAS, the global regulator of virulence factors, was involved in this regulation of LPS biosynthesis. In contrast, no evidence was found for the involvement of the Bordetella pertussis BvgAS system in regulation of LPS synthesis. The obligate human pathogens B. pertussis and Bordetella holmesii are closely related but were shown to produce immunologically distinct LPSs. These species are isolated from the upper respiratory tract and blood, respectively. This raises several interesting questions concerning the potential role of LPS as a virulence factor in the infection processes.
-
-
-
PAGE analysis of the heteroduplexes formed between PCR-amplified 16S rRNA genes: estimation of sequence similarity and rDNA complexity
More LessAnalysis of the 16S rRNA genes retrieved directiy from different environments has proven to be a powerful tool that has greatly expanded our knowledge of microbial diversity and phylogeny. It is shown here that sequence similarity between 80 and 100% among 16S rDNAs can be estimated by the electrophoretic migration of their heteroduplexes. This was measured by hybridization and electrophoresis in polyacrylamide gels of the product obtained after PCR amplification of almost the entire 16S rRNA gene from different bacterial species. These heteroduplexes were also observed after amplification of samples containing DNA from two or more bacterial species and a procedure was applied to identify reliably heteroduplexes among the amplification products. The electrophoretic migration of the heteroduplexes observed after PCR was used to detect the presence of 16S rDNAs with different sequences in DNA extracted from both a mixture of two bacterial species and samples containing a natural bacterial community.
-
- Genetics And Molecular Biology
-
-
-
Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora: facile trans activation by the carR transcriptional regulator
Few strains of Erwinia carotovora subsp. carotovora (Ecc) make carbapenem antibiotics. Strain GS101 makes the basic carbapenem molecule, 1-carbapen-2-em-3-carboxylic acid (Car). The production of this antibiotic has been shown to be cell density dependent, requiring the accumulation of the small diffusible molecule N-(3-oxohexanoyl)-L-homoserine lactone (OHHL) in the growth medium. When the concentration of this inducer rises above a threshold level, OHHL is proposed to interact with the transcriptional activator of the carbapenem cluster (CarR) and induce carbapenem biosynthesis. The introduction of the GS101 carR gene into an Ecc strain (SCRI 193) which is naturally carbapenem-negative resulted in the production of Car. This suggested that strain SCRI 193 contained functional cryptic carbapenem biosynthetic genes, but lacked a functional carR homologue. The distribution of trans-activatable antibiotic genes was assayed in Erwinia strains from a culture collection and was found to be common in a large proportion of fee strains. Significantly, amongst the Ecc strains identified, a larger proportion contained trans-activatable cryptic genes than produced antibiotics constitutively. Southern hybridization of the chromosomal DNA of cryptic Ecc strains confirmed the presence of both the car biosynthetic cluster and the regulatory genes. Identification of homologues of the transcriptional activator carR suggests that the cause of the silencing of the carbapenem biosynthetic cluster in these strains is not the deletion of carR. In an attempt to identify the cause of the silencing in the Ecc strain SCRI 193 the carR homologue from this strain was cloned and sequenced. The SCRI 193 CarR homologue was 94% identical to the GS101 CarR and contained 14 amino acid substitutions. Both homologues could be expressed from their native promoters and ribosome-binding sites using an in vitro prokaryotic transcription and translation assay, and when the SCRI 193 carR homologue was cloned in multicopy plasmids and reintroduced into SCRI 193, antibiotic production was observed. This suggested that the mutation causing the silencing of the biosynthetic cluster in SCRI 193 was leaky and the cryptic Car phenotype could be suppressed by multiple copies of the apparently mutant transcriptional activator.
-
-
-
-
Characterization of the glnB gene product of Nostoc punctiforme strain ATCC 29133: glnB or the PII protein may be essential
More LessBacterial PII proteins, encoded by glnB genes, are central signalling molecules in nitrogen regulatory pathways and are modulated by post-translational modification in response to the cellular nitrogen status. The glnB gene was cloned from the filamentous heterocyst-forming cyanobacterium Nostoc punctiforme strain ATCC 29133 (PCC 73102) by heterologous hybridization to a Synechococcus sp. strain PCC 7942 gene fragment. Expression of the cloned gene was verified by hybridization to N. punctiforme total RNA and a single cross-reactive polypeptide was observed in immunoblots of N. punctiforme extracts probed with anti-Synechococcus 7942 PII antiserum. Modification of the purified N. punctiforme PII protein by a Synechococcus 7942 PII kinase was observed, but modified forms of PII were not detected in extracts of N. punctiforme from a variety of incubation conditions. The N. punctiforme glnB gene could not be disrupted by targeted gene replacement unless a second copy of glnB was provided in trans, suggesting that the gene or gene product is essential for growth under the conditions tested.
-
-
-
Identification of Mycobacterium tuberculosis signal sequences that direct the export of a leaderless β-lactamase gene product in Escherichia coli
Proteins secreted by Mycobacterium tuberculosis may play a key role in virulence and may also constitute antigens that elicit the host immune response. However, the M. tuberculosis protein export machinery has not been characterized. A library of M. tuberculosis H37Rv genomic DNA fragments ligated into a signal sequence selection vector that contained a leaderless β-lactamase gene and an upstream Tac promoter was constructed. Transformation of Escherichia coli with the M. tuberculosis DNA library and selection on plates containing 50-100 μg ampicillin ml-1 resulted in the identification of 15 Ampr clones out of a total of 14000 transformants. Twelve of the β-lactamase gene fusions conferred high levels of Ampr (up to 1 mg ampicillin ml-1); insert sizes ranged from 350 to 3000 bp. Of ten inserts that were completely sequenced, two were identified as fragments of the genes for M. tuberculosis antigens 85A and 85C, which are the major secreted proteins of this pathogen. Seven of the remaining inserts were ≥97% identical to hypothetical ORFs in the M. tuberculosis genome, one of which encoded a protein with 35% identity to a low-affinity penicillin-binding protein (PBP) from Streptomyces clavuligerus. Four of the seven hypothetical ORFs encoded putative exported proteins with one or more membrane interaction elements, including lipoprotein attachment sites and type I and II transmembrane (TM) segments. All of the inserts encoded typical signal sequences, with the exception of a possible type II membrane protein. It is concluded that expression of β-lactamase gene fusions in E. coli provides a useful system for the identification and analysis of M. tuberculosis signal-sequence-encoding genes.
-
-
-
Genes for D-arabinitol and ribitol catabolism from Klebsiella pneumoniae
More LessThe enzymes for catabolism of the pentitols D-arabinitol (Dal) and ribitol (Rbt) and the corresponding genes from Klebsiella pneumoniae (dal and rbt) and Escherichia coli (atl and rtl) have been used intensively in experimental evolutionary studies. Four dal and four rbt genes from the chromosome of K. pneumoniae 1033-5P14 were cloned and sequenced. These genes are clustered in two adjacent but divergently transcribed operons and separated by two convergently transcribed repressor genes, daIR and rbtR. Each operon encodes an NAD-dependent pentose dehydrogenase (daID and rbtD), an ATP-dependent pentulose kinase (daIK and rbtK) and a pentose-specific ion symporter (dalT and rbtT). Although the biochemical reactions which they catalyse are highly similar, the enzymes showed interesting deviations. Thus, DalR (313 aa) and RbtR (270 aa) belong to different repressor families, and DalD (455 aa) and RbtD (248 aa), which are active as a monomer or as tetramers, respectively, belong to different dehydrogenase families. Of the two kinases (19.3% identity), DalK (487 aa) belongs to the subfamily of short D-xylulokinases and RbtK (D-ribulokinase; 535 aa) to the subfamily of long kinases. The repressor, dehydrogenase and kinase genes did not show extensive similarity beyond local motifs. This contrasts with the ion symporters (86.6% identity) and their genes (82.7% identity). Due to their unusually high similarity, parts of dalT and rbtT have previously been claimed erroneously to correspond to ‘inverted repeats’ and possible remnants of a ‘metabolic transposon’ comprising the dal and rbt genes. Other characteristic structures, e.g. a secondary attλ site and chi-like sites, as well as the conservation of this gene group in E. coli C are also discussed.
-
-
-
Molecular analysis of the DNA gyrB gene from Myxococcus xanthus
More LessDNA gyrase, an essential type II topoisomerase, mediates negative supercoiling of the bacterial chromosome, thereby affecting the processes of DNA replication, transcription, recombination and repair. The gyrB gene from the Gram-negative soil bacterium Myxococcus xanthus was sequenced. The sequence predicts a protein of 815 amino acid residues displaying significant homology to all known GyrB proteins. A 6-His-GyrB fusion protein was overexpressed in Escherichia coli and purified to near homogeneity using affinity chromatography on Ni-nitrilotriacetic acid-agarose and novobiocin-Sepharose columns. The fusion protein bound novobiocin and cross-reacted with anti-E. coli GyrB antibodies, indicating structural and functional similarities to the E. coli DNA GyrB. The gene was mapped to the region of the origin of replication (oriC of M. xanthus.
-
-
-
Chromosomal marker exchange in the thermophilic archaeon Sulfolobus acidocaldarius: physiological and cellular aspects
More LessExchange and recombination of chromosomal markers is an intrinsic genetic property of the thermoacidophilic archaeon Sulfolobus acidocaldarius that has not been thoroughly characterized. To clarify the mechanism and experimental usefulness of this process, the frequency of S. acidocaldarius prototrophs produced from mixtures of two pyrimidine auxotrophs under a variety of conditions was determined. The apparent efficiency of genetic exchange was essentially independent of the density of cells deposited on the surface of solid media. Furthermore, recombinant formation could initiate in liquid suspensions, as indicated by high recombinant frequencies resulting from mixtures plated at low cell densities, and the formation of recombinants at equal or higher frequencies in liquid suspensions that were never plated. Apparent initiation of genetic exchange in liquid at 22 °C was not prevented by DNase, prior digestion of parental cells with protease from Streptomyces griseus, or any other non-lethal chemical agent tested. The results support prior indications that chromosomal marker exchange in S. acidocaldarius proceeds via conjugation, and further indicate that this conjugation can initiate quickly in dilute liquid suspension. The mating system of S. acidocaldarius thus appears physiologically distinct from that of Haloferax volcanii but perhaps similar to conjugational transfer of Sulfolobus plasmid pNOB8. The frequency of recombinants formed in these assays (10-4-10-5 per c.f.u.) greatly exceeds the number of spontaneous forward mutational events per generation for biosynthetic genes in S. acidocaldarius. This suggests that chromosomal exchange has the potential to influence the genetic dynamics of natural Sulfolobus populations.
-
-
-
The NADH-dependent glutamate dehydrogenase enzyme of Bacteroides fragilis Bf1 is induced by peptides in the growth medium
More LessBacteroides fragilis Bf1 possesses two enzymes having glutamate dehydrogenase (GDH) activity. One is dual cofactor NAD(P)H-dependent, while the other has NADH-specific activity. The gene encoding the NADH-GDH (gdhB) was cloned by complementation of the glutamate auxotrophic mutant Escherichia coli MX3004 and the recombinant protein was characterized with respect to the GDH activities present in the parental organism grown under different nitrogen conditions. The NAD(P)H-dependent GDH of B. fragilis was confirmed to be most active under high ammonia conditions, but the NADH-specific GDH levels were increased by high peptide concentrations in the growth medium and not regulated by the levels of ammonia. Northern blotting analysis showed that gdhB regulation was at the transcription level, with a single transcript of ∼ 1.6 kb being produced. GDH activity was demonstrated by zymography of the parental and recombinant enzymes. The recombinant GDH was NADH-specific and co-migrated with the equivalent enzyme band from B. fragilis cell extracts. The gdhB structural gene comprises 1335 bp and encodes a protein of 445 aa (49 kDa). Comparisons of the derived protein sequence with that of GDH from other bacteria indicated that significant sequence homology and conservation of functional domains exists with enzymes of Family I-type hexameric GDH proteins.
-
- Physiology And Growth
-
-
-
Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris
More LessThe biosynthesis of the extracellular polysaccharide xanthan in Xanthomonas campestris pv. campestris is directed by a cluster of 12 genes, gumB-gumM. Several xanthan-deficient mutants of the wild-type strain 8004 have previously been described which carry Tn5 insertions in this region of the chromosome. Here it is shown that the transposon insertion in one of these mutants, strain 8397, is located 15 bp upstream of the translational start site of the gumB gene. EDTA-treated cells of strain 8397 were able to synthesize the lipid-linked pentasaccharide repeating unit of xanthan from the three nucleotide sugar donors (UDP-glucose, GDP-mannose and UDP-glucuronic acid) but were unable to polymerize the pentasaccharide into mature xanthan. A subclone of the gum gene cluster carrying gumB and gumC restored xanthan production to strain 8397 to levels approximately 28% of the wild-type. In contrast, subclones carrying gumB or gumC alone were not effective. These results are discussed with reference to previous speculations, based on computer analysis, that gumB and gumC are both involved in the translocation of xanthan across the bacterial membranes.
-
-
-
-
Multiple oligomieric forms of glucoses-6-phosphate dehydrogenase in cyanobacteria and the role of OpeA in the assembly process
More LessMultiple molecular forms of glucose-6-phosphate dehydrogenase (G6PDH) were detected by activity staining in non-denaturing polyacrylamide gels of cell-free extracts from a range of cyanobacteria including Anabaena sp. PCC 7120, Synechococcus sp. PCC 7942, Plectonema boryanum PCC 73110, Synechocystis sp. PCC 6803, Nostoc sp. MAC PCC 8009 and the marine strain Synechococcus sp. WH7803. In most of the species tested, the profile of G6PDH activities was modulated by the growth of the cells in the presence of exogenous 10 mM glucose. Using an antiserum raised against a fragment of G6PDH from Anabaena sp. PCC 7120, it was shown that the different molecular forms of G6PDH all contained an antigenically related subunit, suggesting that the different forms arose from different quaternary structures involving the same monomer. An insertion mutant of Synechococcus sp. PCC 7942 was constructed in which the opcA gene, adjacent to zwf (encoding G6PDH), was disrupted. Although no reduction in the amount of G6PDH monomers (Zwf) was observed in the opcA mutant, activity staining of native gels indicated that most of this protein is not assembled into one of the active oligomeric forms. The oligomerization of G6PDH in extracts of the opcA mutant was stimulated in vitro by a factor present in crude extracts of the wild-type, suggesting that the product of the opcA gene is involved in the oligomerization and activation of G6PDH.
-
-
-
Pleiotropic effects of potassium deficiency in a heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa
More LessOmission of potassium from the growth medium caused multiple metabolic impairments and resulted in cessation of growth of the filamentous, heterocystous, nitrogen-fixing cyanobacterium Anahaena torulosa, during both diazotrophic and nitrogen-supplemented growth. Prominent defects observed during potassium deprivation were: (i) the loss of photosynthetic pigments, (ii) impairment of photosynthetic functions, (iii) reduced synthesis of dinitrogenase reductase (Fe-protein), (iv) inhibition of nitrogenase activity, and (v) specific qualitative modifications of protein synthesis leading to the repression of twelve polypeptides and synthesis and accumulation of nine novel polypeptides. The observed metabolic defects were reversible, and growth arrested under prolonged potassium deficiency was fully restored upon re-addition of potassium. Such pleiotropic effects of potassium deficiency demonstrate that apart from its well-known requirement for pH and turgor homeostasis, K+ plays other vital specific roles in cyanobacterial growth and metabolism.
-
-
-
Phytase activity of anaerobic ruminal bacteria
More LessPhytase catalyses the release of phosphate from phytate (myo-inositol hexakisphosphate), the predominant form of phosphorus in cereal grains, oilseeds and legumes. The presence of phytase activity was investigated in 334 strains of 22 species of obligately anaerobic ruminal bacteria. Measurable activities were demonstrated in strains of Selenomonas ruminantium, Megasphaera elsdenii, Prevotella ruminicola, Mitsuokella multiacidus and Treponema spp. Strains isolated from fermentations with cereal grains proved to have high activity, and activity was particularly prevalent in S. ruminantium, with over 96% of the tested strains being positive. The measured phytase activity was found exclusively associated with the bacterial cells and was produced in the presence of approximately 14 mM phosphate. The most highly active strains were all S. ruminantium, with the exception of the one Mitsuokella multiacidus strain examined. Phytase activity varied greatly among positive strains but activities as high as 703 nmol phosphate released (ml culture)-1 were measured for a S. ruminantium strain and 387 nmol phosphate released (ml culture)-1 for the Mitsuokella multiacidus strain.
-
-
-
Inducible chitinolytic system of Aspergillus fumigatus
More LessIncubation of Aspergillus fumigatus NCPF 2140 in growth medium containing 1 % chitin as sole carbon source led to induction of specific extracellular chitinolytic activity of 1.5 μmol GlcNAc released min-1 (mg protein)-1. The effect was repressed by the inclusion of GlcNAc in the medium, indicating regulation by a negative feedback mechanism. Extracellular chitinase activity was inhibited by allosamidin (IC50 0.12 μM). Multiple chitinolytic enzymes were detected on zymograms of extracellular preparations; levels of individual enzymes induced were dependent upon whether cells were incubated with purified colloidal chitin or a crude preparation of crystalline chitin. A major, inducible, 45 kDa chitinase was purified using ammonium sulphate precipitation, chitin affinity chromatography and a novel procedure involving the electroelution of the enzyme from a substrate gel containing glycol chitin. The enzyme is a glycoprotein with endochitinase activity.
-
-
-
Characterization of a second cell-associated Arg-specific cysteine proteinase of Porphyromonas gingivals and identification of an adhesin-binding motif involved in association of the prtR and prtK proteinases and adhesins into large complexes
More LessPorphyromonas gingivalis has been associated with the development of adult periodontitis and cysteine proteinases with Arg- and Lys-specific activity have been implicated as major virulence factors. In a cell sonicate of P. gingivalis W50, a complex of non-covalently associated proteins has been previously characterized. This complex is composed of a 45 kDa Arg-specific, calcium-stabilized cysteine proteinase (PrtR45), a 48 kDa Lys-specific cysteine proteinase (PrtK48) and seven sequence-related adhesins designated PrtR44, PrtR15, PrtR17, PrtR27, PrtK39, PrtK15 and PrtK44, with all proteins being encoded by the two genes prtR and prtK. It has been proposed that these non-covalently associated complexes form extracellularly after autolytic processing of the PrtR and PrtK polyproteins, with the adhesins binding to the proteinases (PrtR45 and PrtK48) and autoaggregating. Another form of the cell-associated, Arg-specific, calcium-stabilized cysteine proteinase is described here. Designated PrtRII50, it is a discrete 50 kDa protein with no adhesin-association and has enzymic characteristics and an inhibitor/activator profile almost identical to PrtR45. The PrtRII50 proteinase is encoded as a preproprotein by a second gene, prtRII, with high sequence similarity to PrtR except that it lacks the C-terminal adhesin domains. A comparison of the deduced amino acid sequence of PrtRII50 with that of the adhesin-associated proteinases PrtR45 and PrtK48 revealed that PrtRII50 does not contain a C-terminal motif that is conserved in PrtR45 and PrtK48. Related motifs are also found in the adhesin domains of PrtR and PrtK. It is proposed that this conserved motif is an adhesin-binding motif (ABM) involved in association of the PrtR and PrtK proteinases and adhesins into large complexes, as the PrtR-PrtK proteinase-adhesin complex inactivated by N-α-p-tosyl-L-lysine chloromethyl ketone (TLCK) was shown to bind specifically to a synthetic peptide corresponding to the conserved motif in a competitive binding assay.
-
Volumes and issues
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)