1887

Abstract

A gene encoding glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) was isolated from A cell extract of expressing the cloned gene exhibited glucose-1-phosphate uridylyltransferase activity. The enzyme catalyses the conversion of D-glucose 1-phosphate and UTP into UDP-D-glucose. Rabbit antiserum against the serotype-c-specific antigen did not react with autoclaved extracts from mutant cells in which the cloned gene was insertionally inactivated. The glucose content of the cell-wall preparation purified from the mutant was very much lowered, whereas there was no observable decrease in the content of rhamnose. When the mutant strain was grown in an acidic environment, its cell viability was much lower than that of the wild-type. These results suggest that UDP-D-glucose functions not only as an immediate precursor of the serotype-c-specific antigen of (as a glucose donor for side-chain formation), but is also important for the organism’s viability in environmental conditions of low pH.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-5-1235
1998-05-01
2021-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/5/mic-144-5-1235.html?itemId=/content/journal/micro/10.1099/00221287-144-5-1235&mimeType=html&fmt=ahah

References

  1. Ajdic, D., Sutcliffe, I. C., Russell, R. R. B., Ferretti, J. J. (1996); Organization and nucleotide sequence of the Streptococcus mutans galactose operon.. Gene 180:(1–2)137–144 [CrossRef]
    [Google Scholar]
  2. Bdhringer, J., Fischer, D., Mosier G, Hengge-Aronis, R. (1995); UDP-glucose is a potential intracellular signal molecule in the control of expression of σs and σs dependent genes in Escherichia coii.. Journal of Bacteriology 177:(2)413–422 [CrossRef]
    [Google Scholar]
  3. Bradford, M. M. (1976); A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.. Analytical Biochemistry 72:(1–2)248–254 [CrossRef]
    [Google Scholar]
  4. Bratthall, D. (1970); Demonstration of five serological groups of streptococcal strains resembling Streptococcus mutans.. Odontologisk Revy 21:143–152
    [Google Scholar]
  5. Crater, D. L., Dougherty, B. A., van de Rijn, I. (1995); Molecular characterization of hasC from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP- glucose pyrophosphorylase activity.. Journal of Biological Chemistry 270:(48)28676–28680 [CrossRef]
    [Google Scholar]
  6. Dillard, J. P., Yother, J. (1994); Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3.. Molecular Microbiology 12:(6)959–972 [CrossRef]
    [Google Scholar]
  7. Dillard, J. P., Vandersea, M. W., Yother, J. (1995); Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae.. Journal of Experimental Medicine 181:(3)973–983 [CrossRef]
    [Google Scholar]
  8. Gisever, H. M., Styrvold, O. B., Kaasen, I., Strom, A. R. (1988); Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coii.. Journal of Bacteriology 170:(6)2841–2849 [CrossRef]
    [Google Scholar]
  9. Ginsburg, V. (1964); Sugar nucleotides and the synthesis of carbohydrates.. Adv Enzymol 26:35–88
    [Google Scholar]
  10. Hamada, S., Slade, H. D. (1976); Purification and immunochemical characterization of type e polysaccharide antigen of Streptococcus mutans.. Infection and Immunity 14:(1)68–76 [CrossRef]
    [Google Scholar]
  11. Hengge-Aronis, R., Klein, W., Lange, R., Rimmele, M., Boos, W. (1991); Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary- phase thermotolerance in Escherichia coii.. Journal of Bacteriology 173:(24)7918–7924 [CrossRef]
    [Google Scholar]
  12. Higgins, D. G., Bleasby, A. J., Fuchs, R. (1992); clustal v: improved software for multiple sequence alignment.. Computer Applications in The Biosciences 8:189–191
    [Google Scholar]
  13. Imai, T., Ohta, K., Kigawa, H., Kanoh, H., Taniguchi, T., Tobari J. (1994); Preparation of high-molecular-weight DNA: application to mycobacterial cells.. Analytical Biochemistry 222:(2)479–482 [CrossRef]
    [Google Scholar]
  14. Jiang, X.-M., Neal, B., Santiago, F., Lee, S. J., Romana, L. K. et al. (1991); Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2).. Molecular Microbiology 5:(3)695–713 [CrossRef]
    [Google Scholar]
  15. Keppler, D., Decker, K. (1974) Uridine-5'-diphosphoglucose. Edited by Bergmeyer, H. U. Methods of Enzymatic Analysis vol. 4 New York:: Academic Press,;2225–2228
    [Google Scholar]
  16. Koga, T., Asakawa, H., Okahashi, N., Takahashi, I. (1989); Effect of subculturing on expression of a cell-surface protein antigen by Streptococcus mutans.. Journal of General Microbiology 135:3199–3207
    [Google Scholar]
  17. Laemmli, U. K. (1970); Cleavage of structural proteins during the assembly of the head of bacteriophage T4.. Nature 227:(5259)680–685 [CrossRef]
    [Google Scholar]
  18. Lee, I. S., Slonczewski, J. L., Foster, J. W. (1994); A low-pH inducible, stationary-phase acid tolerance response in Salmonella typhimurium.. Journal of Bacteriology 176:(5)1422–1426 [CrossRef]
    [Google Scholar]
  19. Lee, I. S., Lin, J., Hall, H. K., Bearson, B., Foster, J. W. (1995); The stationary-phase sigma factor σs (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium.. Molecular Microbiology 17:(1)155–167 [CrossRef]
    [Google Scholar]
  20. Linzer, R., Gill, K., Slade, H. D. (1976); Chemical composition of Streptococcus mutans type c antigen: comparison to type a, b, and d antigens.. Journal of Dental Research 55:(1_suppl)109–115 [CrossRef]
    [Google Scholar]
  21. Linzer, R., Reddy, M. S., Levine, M. J. (1986) Immunochemical aspects of serotype carbohydrate antigens of Streptococcus mutans. Edited by Hamada, S., Michalek, S. M., Kiyono, H., Menaker, L., McGhee, J. R. Molecular Microbiology and Immunobiology of Streptococcus mutans Amsterdam:: Elsevier,;29–38
    [Google Scholar]
  22. Lipman, D. J., Pearson, W. R. (1985); Rapid and sensitive protein similarity searches.. Science 227:(4693)1435–1441 [CrossRef]
    [Google Scholar]
  23. Loesche, W. J. (1986); Role of Streptococcus mutans in human dental decay.. Microbiological Reviews 50:(4)353–380 [CrossRef]
    [Google Scholar]
  24. Markovitz, A. (1977) Genetics and regulation of bacterial capsular polysaccharide biosynthesis and radiation sensitivity. Edited by Sutherland, I. Surface Carbohydrates of the Prokaryotic Cell New York:: Academic Press,;415–462
    [Google Scholar]
  25. Marolda, C. L., Valvano, M. A. (1995); Genetic analysis of the dTDP-rhamnose biosynthesis region of the Escherichia coli VW187 (O7: K1) rfb gene cluster: identification of functional homologs of rfbB and rfb A in the rff cluster and correct location of the rffE gene.. Journal of Bacteriology 177:(19)5539–5546 [CrossRef]
    [Google Scholar]
  26. Marolda, C. L., Valvano, M. A. (1996); The GalF protein of Escherichia coli is not a UDP-glucose pyrophosphorylase but interacts with the GalU protein possibly to regulate cellular levels of UDP-glucose.. Molecular Microbiology 22:(5)827–840 [CrossRef]
    [Google Scholar]
  27. Martin, V., Kleschyov, A. L., Klein, J.-P., Beretz, A. (1997) Induction of nitric oxide production by polysides from the cell walls of Streptococcus mutans OMZ 175, a Gram-positive bacterium. . In in the rat aorta. Infect lmmun 652074–2079
    [Google Scholar]
  28. Miller, J. H. (1992) Pl transduction. . In A Short Course in Bacterial Genetics Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory,;263–278
    [Google Scholar]
  29. Morbidoni, H. R., de Mendoza, D., , Cronan, J. E. Jr (1995); Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis.. Journal of Bacteriology 177:(20)5899–5905 [CrossRef]
    [Google Scholar]
  30. Morris, D. L. (1948); Quantitative determination of carbohydrates with Dreywood’s anthrone reagent.. Science 107:(2775)254–255 [CrossRef]
    [Google Scholar]
  31. Ohta, H., Kato, H., Okahashi, N., Takahashi, I., Hamada, S. et al. (1989); Characterization of a cell-surface protein antigen of hydrophilic Streptococcus mutans strain GS-5.. Journal of General Microbiology 135:981–988
    [Google Scholar]
  32. Diffusion-in-gel methods for immunological analysis (1958) Ouchterlony 6:1–78
    [Google Scholar]
  33. Perry, D., Wondrack, L. M., Kuramitsu, H. K. (1983); Genetic transformation of putative cariogenic properties in Streptococcus mutans.. Infect lmmun 41:722–727
    [Google Scholar]
  34. Pritchard, D. G., Gregory, R. L., Michaiek, S. M., McGhee, J. R. (1986) Biochemical aspects of serotype carbohydrate antigens of Streptococcus mutans. Edited by Hamada, S., Michaiek, S. M., Kiyono, H., Menaker, L., McGhee, J. R. Molecular Microbiology and Immunobiology of Streptococcus mutans Amsterdam:: Elsevier,;39—49
    [Google Scholar]
  35. Rantz, L. A., Randall, E. (1955); Use of autoclaved extracts of hemolytic streptococci for serological grouping.. Stanford Med Bull 13:290–291
    [Google Scholar]
  36. Reeves, P., Hobbs, M., Valvano, M. A. (1996); & eight other authors, Bacterial polysaccharide synthesis and gene nomenclature.. Trends in Microbiology 4:(12)495–503 [CrossRef]
    [Google Scholar]
  37. Sambrook, J., Fritsch, E. F., Maniatis, T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schnaitman, C. A., Klena, J. D. (1993); Genetics of lipopoly- saccharide biosynthesis in enteric bacteria.. Microbiological Reviews 57:(3)655–682 [CrossRef]
    [Google Scholar]
  39. Shiroza, T., Kuramitsu H. K. (1993); Construction of a model secretion system for oral streptococci.. Infect lmmun 61:3745–3755
    [Google Scholar]
  40. Soell, M., Lett, E., Holveck, F., SchOiler, M., Wachsmann, D. et al. (1995); Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD 14 antigen, and mannan binding protein inhibits TNF-a release.. Journal of Immunology 154:851–860
    [Google Scholar]
  41. Strominger, J. L., Park, J. T., Thompson, R. E. (1959); Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin.. Journal of Biological Chemistry 234:(12)3263–3268 [CrossRef]
    [Google Scholar]
  42. Sundararajan, T. A., Rapin, A. M. C., Kalckar, H. M. (1962); Biochemical observations on E. coli mutants defective in uridine diphosphoglucose.. Proc Natl Acad Sci USA 48:(12)2187–2193 [CrossRef]
    [Google Scholar]
  43. Tsukioka, Y., Yamashita, Y., Oho, T., Nakano, Y., Koga, T. (1997a); Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans.. Journal of Bacteriology 179:(4)1126–1134 [CrossRef]
    [Google Scholar]
  44. Tsukioka, Y., Yamashita Y., Nakano, Y., Oho, T., Koga, T. (1997b); Identification of a fourth gene involved in dTDP- rhamnose synthesis in Streptococcus mutans.. Journal of Bacteriology 179:(13)4411–4414 [CrossRef]
    [Google Scholar]
  45. Weissborn, A. C., Liu, Q., Rumley, M. K., Kennedy, E. P. (1994); UTP: α-D-glucose-l-phosphate uridylyltransferase of Escherichia coli: isolation and DNA sequence of the galU gene and purification of the enzyme.. Journal of Bacteriology 176:(9)2611–2618 [CrossRef]
    [Google Scholar]
  46. Wethereil, J. R. Jr, , Bleiweis, A. S. (1975); Antigens of Streptococcus mutans: characterization of a polysaccharide antigen from walls of strain GS-5.. Infect lmmun 12:1341–1348
    [Google Scholar]
  47. Yamashita, Y., Takehara, T., Kuramitsu H. K. (1993); Molecular characterization of a Streptococcus mutans mutant altered in environmental stress responses.. Journal of Bacteriology 175:(19)6220–6228 [CrossRef]
    [Google Scholar]
  48. Yanisch-Perron, C., Vieira J, Messing, J. (1985); Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.. Gene 33:(1)103–119 [CrossRef]
    [Google Scholar]
  49. Yao, Z., Valvano, M. A. (1994); Genetic analysis of the O-specific lipopolysaccharide biosynthesis region (rfb) of Escherichia coli K- 12 W3110: identification of genes that confer group 6 specificity to Shigella flexneri serotypes Y and 4a.. J Bacteriol 176,4133—4143.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-5-1235
Loading
/content/journal/micro/10.1099/00221287-144-5-1235
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error