Skip to content
1887

Abstract

Following the complete sequencing of the genome, it has been shown that the proposed second citrate synthase of this organism, recently described by the authors, is in fact a 2-methylcitrate synthase that possesses citrate synthase activity as a minor component. Whereas the hexameric citrate synthase is constitutively produced, the 2-methylcitrate synthase is induced during growth on propionate, and the catabolism of propionate to succinate and pyruvate via 2-methylcitrate is proposed. The citrate synthases of the psychrotolerant eubacterium DS2-3R, and of the thermophilic archaea and , are approximately 40% identical in sequence to the 2-methylcitrate synthase andalso possess 2-methylcitrate synthase activity. The data are discussed with respect tothe structure, function and evolution of citrate synthase and 2-methylcitrate synthase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-4-929
1998-04-01
2025-11-07

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/micro/144/4/mic-144-4-0929.html?itemId=/content/journal/micro/10.1099/00221287-144-4-929&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D.„ Seidman, J. G. et al. (1990) Current Protocols in Molecular Biology New York:: Wiley;
    [Google Scholar]
  2. Danson M. J., Harford S., Weitzman P. D. J. (1979); Studies on a mutant form of Escherichia coli citrate synthase desensitised to allosteric effectors.. European Journal of Biochemistry, 101:(2),515–521 [View Article]
    [Google Scholar]
  3. Donald L. J., Duckworth H. W. (1986); Molecular cloning of the structural gene for Acinetobacter citrate synthase.. Biochem Biophys Res Commun, 141:(2),797–803 [View Article]
    [Google Scholar]
  4. Doolittle W. F., Brown J. R. (1994); Tempo, mode, the progenote and the universal root.. Proc Natl Acad Sci USA, 91:(15),6721–6728 [View Article]
    [Google Scholar]
  5. Eisenthal R., Cornish-Bowden A. (1974); The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters.. Biochemical Journal, 139:(3),715–720 [View Article]
    [Google Scholar]
  6. Evans C. T., Sumegi B., Srere P. A., Sherry A. D., Malloy C. R. (1993); [13C]Propionate oxidation in wild-type and citrate synthase mutant Escherichia coli: evidence for multiple pathways of propionate utilization.. Biochemical Journal, 291:(3),927–932 [View Article]
    [Google Scholar]
  7. Gerike U., Danson M. J., Russell N. J., Hough D. W. (1997)
  8. Sequencing and expression of the gene encoding a cold-active citrate synthase from an Antarctic bacterium, strain DS2-3R European Journal of Biochemistry, 248:49–57
    [Google Scholar]
  9. Gruer M. J., Artymiuk P. J., Guest J. R. (1997); The aconitase family: three structural variations on a common theme.. Trends in Biochemical Sciences, 22:(1),3–6 [View Article]
    [Google Scholar]
  10. Henderson P. J. F. (1992) Statistical analysis of enzyme kinetic data.. In: Edited by R. Eisenthal, C M. J. Danson. Enzyme Assays: a Practical Approach Oxford:: Oxford University Press;277–316
    [Google Scholar]
  11. Horswill A. R., Escalante-Semerena J. C. (1997); Propionate catabolism in Salmonella typhimurium LT2: two divergently transcribed units comprise the prp locus at 8-5 centisomes, prpK encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon.. J Bacterial, 179:(3),928–940 [View Article]
    [Google Scholar]
  12. James K. D., Russell R. J. M., Parker L., Daniel R. M., Hough D. W. et al. (1994); Citrate synthases from the Archaea: development of a bio-specific, affinity chromatography purification procedure.. Fems Microbiology Letters, 119:(1–2),181–186 [View Article]
    [Google Scholar]
  13. Jin S., Sonenshein A. L. (1994); Identification of two distinct Bacillus subtilis citrate synthase genes.. Journal of Bacteriology, 176:(15),4669–4679 [View Article]
    [Google Scholar]
  14. Kroeger M., Wahl R. (1997); Compilation of DNA sequences of E. coli K12: description of the interactive databases ECD and ECDC (update 1996).. Nucleic Acids Research, 25:(1),39–42 [View Article]
    [Google Scholar]
  15. Man W., Li Y., O'Connor C. D., Wilton D. C. (1995); The.
  16. binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase Biochimica Et Biophysica Acta, 1250:69–75
    [Google Scholar]
  17. Mitchell C. G., Anderson S. C. K. (1996); Amino-acid-sequence alignment of a small citrate synthase from Pseudomonas aeruginosa PAC-514 with other citrate synthase sequences.. Biochem Soc Trans, 24:(1),S46–46S [View Article]
    [Google Scholar]
  18. Mitchell C. G., Anderson S. C. K., El-Mansi E. M. T. (1995)
  19. Purification and characterisation of citrate synthase isoenzymes from Pseudomonas aeruginosa Biochemical Journal, 309:507–511
    [Google Scholar]
  20. Muir J. M., Russell R. J. M., Hough D. W., Danson M. J. (1995)
  21. Citrate synthase from the hyperthermophilic Archaeon, Pyro- coccus furiosus Protein Engineering, 8:583–592
    [Google Scholar]
  22. Patton A. J., Hough D. W., Towner P., Danson M. (1993)
  23. Does Escherichia coli possess a second citrate synthase gene ? European Journal of Biochemistry, 214:75–81
    [Google Scholar]
  24. Pronk J. T., van der Linden-Beuman A., Verduyn C., Scheffers W. A., van Dijken J. P. (1994); Propionate metabolism in Saccharomyces cerevisiae: implications for the metabolon hypothesis.. Microbiology, 140:(4),717–722 [View Article]
    [Google Scholar]
  25. Remington S. J. (1992); Structure and mechanism of citrate synthase.. Current Topics in Cellular Regulation, 33:209–229
    [Google Scholar]
  26. Rosenkrantz M., Alam T., Kim K.-S., Clark B. J., Srere P. A. et al. (1986); Mitochondrial and non-mitochondrial citrate synthases in Saccharomyces cerevisiae are encoded by distinct homologous genes.. Molecular and Cellular Biology, 6:(12),4509–4515 [View Article]
    [Google Scholar]
  27. Russell R. J. M., Ferguson J. M., Hough D. W., Danson M. J., Taylor G. L. (1997); The crystal structure of citrate synthase from the hyperthermophilic Archaeon Pyrococcus furiosus at T9 A resolution.. Biochemistry, 36:(33),9983–9994 [View Article]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Segel I. H. (1975) Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Systems New York:: Wiley;113–118
    [Google Scholar]
  30. Srere P. A., Brazil H., Gonen L. (1963); The citrate condensing enzyme of pigeon breast muscle and moth flight muscle.. Acta Chemica Scandinavica, 17:S129–S134 [View Article]
    [Google Scholar]
  31. Tabuchi T., Uchiyama H. (1975); Methylcitrate condensing and methylisocitrate cleaving enzymes; evidence for the pathway of oxidation of propionyl-CoA to pyruvate via C7-tricarboxylic acids.. Agric Biol Chem, 39:2035–2042
    [Google Scholar]
  32. Uchiyama H., Tabuchi T. (1976); Properties of methylcitrate synthase from Candida lipolytica.. Agric Biol Chem, 40:1411–1418
    [Google Scholar]
  33. Wahl R., Kroeger M. (1995); ECDC - a totally integrated and interactively usable genetic map of E. coli K12.. Microbiological Research, 150:(1),7–61 [View Article]
    [Google Scholar]
  34. Wegener W. S., Reeves H. C., Rabin R., Ajl S. J. (1968)
  35. Alternate pathways of metabolism of short-chain fatty acids Bacteriological Reviews, 32:1–26
    [Google Scholar]
  36. Weitzman P. D. J., Kinghorn H. A., Beecroft L. J., Harford S. (1978); Mutant citrate synthases from Acinetobacter generated by transformation.. Biochem Soc Trans, 6:(2),436–438 [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-144-4-929
Loading
/content/journal/micro/10.1099/00221287-144-4-929
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An error occurred
Approval was partially successful, following selected items could not be processed due to error