1887

Abstract

Trihydroxamate siderophores were isolated from iron-deficient cultures of three strains of biovar , two from Japan (WSM709, WSM710) and one from the Mediterranean (WU235), and from a Tn5-induced mutant of WSM710 (MNF7101). The first three all produced the same compound (vicibactin), which was uncharged and could be purified by solvent extraction into benzyl alcohol. The gallium and ferric complexes of vicibactin were extractable into benzyl alcohol at pH 5.0, while metal-free vicibactin could be extracted with good yield at pH 8.0. The trihydroxamate from MNF7101 (vicibactin 7101) could not be extracted into benzyl alcohol, but its cationic nature permitted purification by chromatography on Sephadex CM-25 (NH form). Relative molecular masses and empirical formulae were obtained from fast-atom-bombardment MS. The structures were derived from one- and two-dimensional H and C NMR spectroscopy, using DQF-COSY, NOESY, HMQC and HMBC techniques on the compounds dissolved in methanol- and DMSO- . Vicibactin proves to be a cyclic molecule containing three residues each of ()-2,5-diamino- -acetyl- -hydroxypentanoic acid ( -acetyl- -hydroxy-D-ornithine) and ()-3-hydroxybutanoic acid, arranged alternately, with alternating ester and peptide bonds. Vicibactin 7101 differed only in lacking the acetyl substitution on the N of the -hydroxyornithine, resulting in net positive charge; it was still functional as a siderophore and promoted Fe uptake by iron-starved cells of WSM710 in the presence of an excess of phosphate. The rate of vicibactin biosynthesis by iron-deficient cells of WSM710 was essentially constant between pH 5.5 and 7.0, but much decreased at pH 5.0. When iron-starved cultures were supplemented with potential precursors for vicibactin, the rates of its synthesis were consistent with both β-hydroxybutyrate and ornithine being precursors. At least three genes seem likely to be involved in synthesis of vicibactin from ornithine and β-hydroxybutyrate: a hydroxylase adding the -OH group to the N of ornithine, an acetylase adding the acetyl group to the N of ornithine, and a peptide synthetase system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-3-781
1998-03-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/3/mic-144-3-781.html?itemId=/content/journal/micro/10.1099/00221287-144-3-781&mimeType=html&fmt=ahah

References

  1. Bax A., Subramanian S. 1986; Sensitivity-enhanced twodimensional heteronuclear shift correlation NMR spectroscopy. J Magn Res 67:565–569
    [Google Scholar]
  2. Bax A., Summers M.F. 1986; 1H and 18C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR.. J Am Chem Soc 108:2093–2094
    [Google Scholar]
  3. Billich A., Zocher R. 1987; N-Methyltransferase function of the multifunctional enzyme enniatin synthetase. Biochemistry 26:8417–8423
    [Google Scholar]
  4. Bodenhausen G., Kogier H., Ernst R.R. 1984; Selection of coherence - transfer pathways in NMR pulse experiments. J Magn Res 58:370–388
    [Google Scholar]
  5. Brown C.M., Dilworth M.J. 1975; Ammonia assimilation byRhizobium cultures and bacteroids. J Gen Microbiol 86:39–48
    [Google Scholar]
  6. Carson K.C., Holliday S., Glenn A.R., Dilworth M.J. 1992; Siderophore and organic acid production in root nodule bacteria. Arch Microbiol 157:264–271
    [Google Scholar]
  7. Carson K.C., Glenn A.R., Dilworth M.J. 1994; Specificity of siderophore mediated transport of iron in rhizobia. Arch Microbiol 161:333–339
    [Google Scholar]
  8. Crumbliss A.L. 1991; Aqueous solution equilibrium and kinetic studies of iron siderophore and model siderophore complexes.. In Handbook of Microbial Iron Chelates, pp. 177–234 Winkelmann. G. Edited by Boca Raton:: CRC Press.;
    [Google Scholar]
  9. Fuma S., Fujishima Y., Corbell N., D'Souza C., Nakano M.M., Zuber P., Yamane K. 1993; Nucleotide sequence of5' portion ofsrfA that contains the region required for competence establishment inBacillus subtilis. . Nucleic Acids Res 21:93–97
    [Google Scholar]
  10. Guerinot M.L, Meidl E.J., Plessner O. 1990; Citrate as a siderophore inBradyrhizobium japonicum. . J Bacteriol 172:3298–3303
    [Google Scholar]
  11. Haese A., Schubert M., Herrimann M. 1993; Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation inFusarium scripi. . Mol Microbiol 7:905–914
    [Google Scholar]
  12. HÖfte M. 1993; Classes of microbial siderophores. . In Iron Chelation in Plants and Soil Microorganisms, pp. 3–26 Barton L. L., Hemmings. B. C. Edited by San Diego:: VCH Press.;
    [Google Scholar]
  13. de Hollaender J.A., Stouthamer A.H. 1979; Multicarbon- substrate growth ofRhizobium trifolii . FEMS Microbiol Lett 6:57–59
    [Google Scholar]
  14. Jadhav R.S., Desai A. 1994; Role of siderophore in iron uptake in cowpea rhizobium gnl (peanut isolate) - possible involvement of iron repressible outer membrane proteins. FEMS Microbiol Lett 115:185–189
    [Google Scholar]
  15. Jalal M.A.F., van derHelm D. 1991; Isolation and spectroscopic identification of fungal siderophores. . In Handbook of Microbial Iron Chelates, pp. 235–269 Winkelmann. G. Edited by Boca Raton;: CRC Press.;
    [Google Scholar]
  16. Kleinkauf H., von D#x00D6;dhren H. 1990; Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 192:1–15
    [Google Scholar]
  17. Konetschny-Rapp S., Jung G., Meiwes J., Zahner H. 1990; Staphyloferrin A: a structurally new siderophore from staphlylo- cocci. Eur J Biochem 191:65–74
    [Google Scholar]
  18. Kr#x00E1;tzschmar J., Krause M., Marahiel M.A. 1989; Gramicidin S biosynthesis operon containing the structural genesgrsA andgrsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 171:5422–5429
    [Google Scholar]
  19. de Lajudie P., Willems A., Pot B., Dewettinck D., Maestrojuan G., Neyra M., Collins M.D., Dreyfus B., Kersters K., Gillis M. 1994; Polyphasic taxonomy of rhizobia: emendation of the genusSinorhizobium and description ofSinorhizobium meliloti comb, nov., Sinorhizobium sahlei sp. nov., andSinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733
    [Google Scholar]
  20. Lesueur D., Diem H.G., Meyer J.M. 1993; Iron requirement and siderophore production inBradyrhizobium strains isolated fromAcacia mangium. . J Appl Bacteriol 74:675–682
    [Google Scholar]
  21. de Lorenzo V., Neilands J.B. 1986; Characterization ofiucAandiucC genes of the aerobactin system of plasmid ColV-K30 inEscherichia coli. . J Bacteriol 167:350–355
    [Google Scholar]
  22. Modi M., Shah K.S., Modi V.V. 1985; Isolation and characterisation of catechol-type siderophore from cowpeaRhizobium RA-1. Arch Microbiol 141:156–158
    [Google Scholar]
  23. Monzyk B., Crumbliss A.L. 1982; Kinetics and mechanism of the stepwise dissociation of iron (III) from ferrioxamine B in aqueous acid. J Am Chem Soc 104:4921–4929
    [Google Scholar]
  24. Nambiar P.T.C., Sivaramakrishnan S. 1987; Detection and assay of siderophores in cowpea rhizobia{Bradyrhizobium) using radioactive Fe (59Fe). Appl Microbiol Lett 4:37–40
    [Google Scholar]
  25. Neilands J.B. 1981; Microbial iron compounds. Annu Rev Biocbem 50:715–731
    [Google Scholar]
  26. Neilands J.B. 1982; Microbial envelope proteins related to iron. Annu Rev Biocbem 36:285–309
    [Google Scholar]
  27. Neilands J.B. 1984; Methodology of siderophores. Struct Bond 58:1–24
    [Google Scholar]
  28. Neilands J.B. 1991; A brief history of iron metabolism. Biol Metals 4:1–6
    [Google Scholar]
  29. O'Hara G.W., Dilworth M.J., Boonkerd N., Parkpian P. 1988; Iron deficiency specifically limits nodule development in peanut inoculated withBradyrhizobium sp. New Pbytol 108:51–57
    [Google Scholar]
  30. Pandey A., Bringel F., Meyer J.M. 1994; Iron requirement and search for siderophores in lactic acid bacteria. Appl Microbiol Biotecb 40:735–739
    [Google Scholar]
  31. Patel H.N., Chakraborty R.N., Desal S.B. 1988; Isolation and partial characterization of phenolate siderophore fromRbizo- bium leguminosarum IARI102. FEMS Microbiol Lett 56:131–134
    [Google Scholar]
  32. Persmark M., Pittman P., Buyer J.S., Schwyn B., Gill P.R., Neilands J.B. 1993; Isolation and structure of rhizobactin 1021 a siderophore from alfalfa symbiontRbizobium meliloti1021.. J Am Cbem Soc 115:3950–3956
    [Google Scholar]
  33. Piantini U., Sorenson O.W., Ernst R.R. 1982; Multiple quantum filters for elucidating NMR coupling networks. J Am Cbem Soc 104:6800–6802
    [Google Scholar]
  34. Pieper R., Haese A., Schr#x00D6;der W., Zocher R. 1995; Arrangement of catalytic sites in the multifunctional enzyme enniatin synthetase. Eur J Biocbem 230:119–126
    [Google Scholar]
  35. Rioux C. R., Jordan D. C., Rattray J. B. M. 1986a; Iron requirement ofRbizobium leguminosarum and secretion of anthranilic acid during growth on an iron-deficient medium. Arcb Biocbem 248:175–182
    [Google Scholar]
  36. Rioux C.R., Jordan D.C., Rattray J.B.M. 1986b; Anthra- nilate-promoted iron uptake inRbizobium leguminosarum. . Arcb Biocbem 248:183–189
    [Google Scholar]
  37. Roy N., Bhattacharyya P., Chakrabartty P.K. 1994; Iron acquisition during growth in an iron deficient medium byRbizobium sp. isolated fromCicer arietinum. . Microbiology 140:2811–2820
    [Google Scholar]
  38. Schwyn B., Neilands J.B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biocbem 160:47–56
    [Google Scholar]
  39. Sharman G.J., Williams D.H., Ewing D.F., Ratledge C. 1995; Isolation, purification and structure of exochelin MS, the extracellular siderophore fromMycobacterium smegmatis. . Biocbem J 305:187–196
    [Google Scholar]
  40. Smith I., Seakins J.W.T. 1976 Cbromatograpbic and Electrophoretic Techniques 1:, 4th. Bath:: William Heinemann Medical Books.;
    [Google Scholar]
  41. Smith M.J., Shooiery J.N., Schwyn B., Holden I., Neilands J.B. 1985; Rhizobactin, a structurally novel siderophore fromRbizobium meliloti. . J Am Cbem Soc 107:1739–1743
    [Google Scholar]
  42. Stachelhaus T., Marahiel M.A. 1995; Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 125:3–14
    [Google Scholar]
  43. Stephan H., Freund S., Meyer J.M., Winkelmann G., Jung G. 1993; Structure elucidation of the gallium ornibactin complex by 2D NMR spectroscopy. Liebigs Ann Cbem43–48
    [Google Scholar]
  44. Tang C., Robson A.D., Dilworth M.J. 1991; Which stage of nodule initiation inLupinus angustifolius L. is sensitive to iron deficiency?. New Pbytol 117:243–250
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-3-781
Loading
/content/journal/micro/10.1099/00221287-144-3-781
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error