- Volume 144, Issue 3, 1998
Volume 144, Issue 3, 1998
- Review Article
-
-
-
Bioremediation: towards a credible technology
More LessBioremediation is the technological process whereby biological systems are harnessed to effect the clean-up of environmental pollutants. Currently, microbial systems are most widely employed in bioremediation programmes, generally in the treatment of soils and waters contaminated with organic pollutants. Micro-organisms have a huge metabolic repertoire that enables them to degrade a panoply of organic pollutants and in many cases the complex biochemistry and molecular biology of the catabolic pathways involved have been unravelled (e.g. Gibson, 1984; Frantz et al., 1987; Evans & Fuchs, 1988; Burlage et al., 1989; Abramowicz, 1990; Assinder & Williams, 1990; Chaudhry & Chapalamadugu, 1991; Cerniglia, 1992; Knackmuss, 1996). Despite valuable basic knowledge on the mechanisms of pollutant bio-degradation, bioremediation has yet to be accepted as a routine treatment technology and the environmental industry is wary of applying bioremediation for the treatment of contaminated sites.
-
-
- Microbiology Comment
-
- Antigens And Immunity
-
-
-
Re-evaluation of the serotypes of Serratia marcescens and separation into two schemes based on lipopolysaccharide (O) and capsular polysaccharide (K) antigens
More LessChemical and serological analysis has revealed that many of the 29 O serotype reference strains of Serratia marcescens contain both neutral and acidic polysaccharides which correspond to LPS O antigens and capsular K antigens, respectively. New O and K antigen typing schemes have therefore been devised, based on the known chemical structures of the surface polysaccharides of the organism. These schemes were designed to allow the specific detection of these antigens on unknown strains using ELISAs. O antigens were detected using whole cells cultured in broth then autoclaved to remove capsular material, while K antigens were detected using formolized whole cells which had been cultured on glycerol agar to enhance capsule production. After testing with the 29 reference strains as well as 423 distinct clinical strains, it was apparent that different aspects of chemical structure were associated with different degrees of serological reactivity and the typing schemes were modified further to accommodate this. In general, the O antigen repeating unit structures were chemically simple with di-or trisaccharide backbones. Serological specificity was often provided solely by the presence or absence of an O-acetyl substituent, or a change in the linkage between two sugar residues. Five of the O serotypes in the new scheme were represented by 12 of the 29 reference strains, while three reference strains lacked O antigens altogether, resulting in the elimination of 10 of the original O types. In contrast, the K antigen repeating unit structures were more complex and chemically diverse, having at least four sugar residues. Three K types were each seen in two reference strains while 12 of the 29 reference strains were acapsular. Thus, the resulting schemes contain 19 O types and 14 K types and allow the definitive serotype identification of S. marcescens.
-
-
- Biochemistry
-
-
-
Rhizobium leguminosarum bv. viciae produces a novel cyclic trihydroxamate siderophore, vicibactin
More LessTrihydroxamate siderophores were isolated from iron-deficient cultures of three strains of Rhizobium leguminosarum biovar viciae, two from Japan (WSM709, WSM710) and one from the Mediterranean (WU235), and from a Tn5-induced mutant of WSM710 (MNF7101). The first three all produced the same compound (vicibactin), which was uncharged and could be purified by solvent extraction into benzyl alcohol. The gallium and ferric complexes of vicibactin were extractable into benzyl alcohol at pH 5.0, while metal-free vicibactin could be extracted with good yield at pH 8.0. The trihydroxamate from MNF7101 (vicibactin 7101) could not be extracted into benzyl alcohol, but its cationic nature permitted purification by chromatography on Sephadex CM-25 (NH+ 4 form). Relative molecular masses and empirical formulae were obtained from fast-atom-bombardment MS. The structures were derived from one- and two-dimensional 1H and 13C NMR spectroscopy, using DQF-COSY, NOESY, HMQC and HMBC techniques on the compounds dissolved in methanol-d 4 and DMSO-d 6. Vicibactin proves to be a cyclic molecule containing three residues each of (R)-2,5-diamino-N 2-acetyl-N 5-hydroxypentanoic acid (N 2-acetyl-N 5-hydroxy-D-ornithine) and (R)-3-hydroxybutanoic acid, arranged alternately, with alternating ester and peptide bonds. Vicibactin 7101 differed only in lacking the acetyl substitution on the N2 of the N 5-hydroxyornithine, resulting in net positive charge; it was still functional as a siderophore and promoted 55Fe uptake by iron-starved cells of WSM710 in the presence of an excess of phosphate. The rate of vicibactin biosynthesis by iron-deficient cells of WSM710 was essentially constant between pH 5.5 and 7.0, but much decreased at pH 5.0. When iron-starved cultures were supplemented with potential precursors for vicibactin, the rates of its synthesis were consistent with both β-hydroxybutyrate and ornithine being precursors. At least three genes seem likely to be involved in synthesis of vicibactin from ornithine and β-hydroxybutyrate: a hydroxylase adding the -OH group to the N5 of ornithine, an acetylase adding the acetyl group to the N2 of ornithine, and a peptide synthetase system.
-
-
-
-
Fast purification of thioredoxin reductases and of thioredoxins with an unusual redox-active centre from anaerobic, amino-acid-utilizing bacteria
More LessThioredoxin reductase and thioredoxin are primarily involved in catabolic metabolism as important electron carriers in anaerobic, amino-acid-degrading bacteria. A general and fast procedure was developed for the purification of thioredoxin reductase and thioredoxin from Eubacterium acidaminophilum, Clostridium litorale, C. sticklandii, C. sporogenes, C. cylindrosporum and ‘Tissierella creatinophila’ based upon their properties: the binding to 2′,5′-AMP-Sepharose by thioredoxin reductase and the inability of thioredoxins to bind to a DEAE-Sephacel column. The consensus sequence at the active site of thioredoxins (-WCGPC-) was found to be modified in all of these anaerobes: Trp-31 (Escherichia coli nomenclature) was replaced by Gly or Ser, Gly-33 by Val or Glu. None of these thioredoxins reacted with thioredoxin reductase of E. coli or vice versa, but they did interact with the thioredoxin reductases obtained from the other anaerobes studied. Based upon their distinguishing features it is suggested that these thioredoxins might form an evolutionarily separate group.
-
- Bioenergetics And Transport
-
-
-
Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii
More LessZygosaccharomyces bailii ISA 1307 displays biphasic growth in a medium containing a mixture of glucose (0.5%, w/v) and acetic acid (0.5%, w/v), pH 5.0 and 3.0. In cells harvested during the first growth phase, no activity of a mediated acetic acid transport system was found. Incubation of these cells in phosphate buffer with cycloheximide for 1 h restored activity of an acetic acid carrier which behaved as the one present in glucose-grown cells. These results indicated that the acetic acid carrier is probably present in cells from the first growth phase of the mixed medium but its activity was affected by the presence of acetic acid in the culture medium. In glucose-grown cells, after incubation in phosphate buffer with glucose and acetic acid, the activity of the acetic acid carrier decreased significantly with increased acid concentration in the incubation buffer. At acid concentrations above 16.7 mM, no significant carrier activity was detectable. Furthermore, the intracellular acid concentration increased with the extracellular one and was inversely correlated with the activity of the acetic acid carrier, suggesting the involvement of a feedback inhibition mechanism in the regulation of the carrier. During biphasic growth, the first phase corresponded to a simultaneous consumption of glucose and acetic acid, and the second to the utilization of the remaining acid. The enzyme acetyl-CoA synthetase was active in both growth phases, even in the presence of glucose. Activity of isocitrate lyase and phosphoenolpyruvate carboxykinase was found only in acetic-acid-grown cells. Thus it appears that both membrane transport and acetyl-CoA synthetase and their regulation are important for Z. bailii to metabolize acetic acid in the presence of glucose. This fact correlates with the high resistance of this yeast to environments with mixtures of sugars and acetic acid such as those often present during wine fermentation.
-
-
- Environmental Microbiology
-
-
-
Horizontal spread of mer operons among Gram-positive bacteria in natural environments
Horizontal dissemination of the genes responsible for resistance to toxic pollutants may play a key role in the adaptation of bacterial populations to environmental contaminants. However, the frequency and extent of gene dissemination in natural environments is not known. A natural horizontal spread of two distinct mercury resistance (mer) operon variants, which occurred amongst diverse Bacillus and related species over wide geographical areas, is reported. One mer variant encodes a mercuric reductase with a single N-terminal domain, whilst the other encodes a reductase with a duplicated N-terminal domain. The strains containing the former mer operon types are sensitive to organomercurials, and are most common in the terrestrial mercury-resistant Bacillus populations studied in this work. The strains containing the latter operon types are resistant to organomercurials, and dominate in a Minamata Bay mercury-resistant Bacillus population, previously described in the literature. At least three distinct transposons (related to a class II vancomycin-resistance transposon, Tn 1546, from a clinical Enterococcus strain) and conjugative plasmids are implicated as mediators of the spread of these mer operons.
-
-
- Genetics And Molecular Biology
-
-
-
Expression of the cold-shock gene cspB in Salmonella typhimurium occurs below a threshold temperature
More LessPrevious studies have shown that several bacterial species exhibit a multigenic response following temperature downshift (cold shock). Evidence for such a response in Salmonella typhimurium is reported, based on the isolation of a range of low-induction-temperature gene fusions containing Mudlux insertions. The fusions exhibited different levels of basal light at 30 °C, and were induced at different rates and to different degrees over several hours following a reduction in temperature to 10 °C. Of the Mudlux gene fusions isolated, one was found which produced essentially no light when grown at 30 °C but exhibited rapid and high-level induction when the temperature was reduced to 10 °C. The target of this gene fusion (which was named cspB) was shown to lie adjacent to the umuDC operon and to encode a homologue of the major cold-shock protein of Escherichia coli, CspA. Luminescence studies revealed that substantial light production occurred from the cspB::Mudlux fusion at or below 22 °C but not at higher temperatures, even following a temperature drop from 30 °C. Moreover, cspB mRNA levels were found to mimic this pattern of luminescence, suggesting that cspB expression occurs below a defined temperature threshold. The cspB mRNA was also found to be very stable at 10 °C but to become highly unstable when the temperature was raised towards the threshold temperature, even in the presence of rifampicin. Existing cellular RNases therefore appear to mediate the decay of cspB mRNA at high temperatures, but are incapable of this at low temperatures.
-
-
-
-
A novel regulatory switch mediated by the FNR-like protein of Lactobacillus casei
More LessFNR (regulator for fumarate and nitrate reduction) and CRP (cAMP receptor protein) are global regulators which regulate the transcription of overlapping modulons of target genes in response to anaerobiosis and carbon source in Escherichia coli. An ORF, designated flp because it encodes an FNR-like protein of the FNR-CRP family, has been found in Lactobacillus casei. The product of the flp coding region (FLP) was overproduced in E. coli, purified and crystallized. FLP is a homodimeric protein in which each subunit can form an intramolecular disulphide bond. The isolated protein also contains non-stoichiometric amounts of Cu and Zn. Although the DNA recognition helix of FLP resembles that of FNR, the flp gene failed to complement the anaerobic respiratory deficiency of an fnr mutant when expressed in E. coli and it neither activated nor interfered with transcription from FNR- or CRP-dependent promoters in E. coli. Site-specific DNA binding by oxidized FLP (the form containing intrasubunit disulphide bonds) was abolished by reduction. The interconversion between disulphide and dithiol forms thus provides the basis for a novel redox-mediated transcriptional switch. Two non-identical FLP-binding sites, distinct from FNR- and CRP-binding sites, were identified in the meIR region of E. coli by gel-retardation analysis. A further eight FLP-binding sites were selected from a random library. A synthetic oligonucleotide conforming to a putative FLP site consensus, CA/cTGA-N4-TCAG/TG (the most significant bases are underlined), was retarded by FLP. Functional tests showed that FLP represses the aerobic transcription of a semi-synthetic promoter in E. coli. A C5S variant of FLP lacking the ability to form intramolecular disulphide bonds was unable to bind to FLP sites and failed to repress transcription in vivo.
-
-
-
The S-layer gene of Lactobacillus helveticus CNRZ 892: cloning, sequence and heterologous expression
Lactobacillus helveticus CNRZ 892 contains a surface layer (S-layer) composed of protein monomers of 43 kDa organized in regular arrays. The gene encoding this protein (sIpH) has been cloned in Escherichia coli and sequenced. sIpH consists of 440 codons and is preceded by a ribosome-binding site (RBS) and followed by a putative ρ-independent terminator. Indeed, Northern analysis revealed that sIpH is a monocistronic gene. The gene is preceded by a possible promoter of which the -35 and -10 hexanucleotides are separated by 17 nt. By primer extension analysis the transcription start site was mapped at 7 nt downstream of the -10 sequence while the deduced amino acid sequence of SIpH shows a leader peptide of 30 aa. The sIpH gene has been amplified by PCR and the fragment, carrying the complete gene from the RBS to the stop codon, has been cloned in a lactococcal gene expression vector downstream of promoter P32. Lactococcus lactis MG1363 carrying the resulting plasmid produced and secreted an S-layer monomer with the same molecular mass as the authentic L. helveticus CNRZ 892 SIpH, as judged by SDS-PAGE. Immunoelectron microscopy revealed that SIpH was bound to the lactococcal cell walls in small clumps and accumulated in the growth medium as small sheets.
-
-
-
A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket
In Streptomyces coelicolor A3(2), bldA mutants that lack the tRNA for the rare leucine codon UUA fail to make the red undecylprodigiosin antibiotic complex. To find out why, red-pigmented while bald (Pwb) derivatives of a bldA mutant were isolated. Using a cloning strategy that allowed for (and demonstrated) dominance of the mutations, they were localized to the red gene cluster. By using insert-mediated integration of a ?C31 phage-based vector, one of the Pwb mutations was more precisely located between red structural genes to a segment of approximately 1 kb about 4 kb from the known pathway-specific regulatory gene redD. The segment contained most of an ORF (redZ) encoding a protein (RedZ) with end-to-end similarity to response regulators of diverse function from a variety of bacteria. Remarkably, in RedZ hydrophobic residues replace nearly all of the charged residues that usually make up the phosphorylation pocket present in typical response regulators, including the aspartic acid residue that is normally phosphorylated by a cognate sensory protein kinase. A single TTA codon in redZ provided a potential explanation for the bldA-dependence of undecylprodigiosin synthesis. This codon was unchanged in three Pwb mutants, but further analysis of one of the mutants revealed a potential up-promoter mutation. It seems possible that a combination of low-level natural translation of the UUA codon by a charged non-cognate tRNA, coupled with increased transcription of redZ in the Pwb mutant, allows the accumulation of a threshold level of the RedD protein.
-
-
-
Stationary phase, amino acid limitation and recovery from stationary phase modulate the stability and translation of chloramphenicol acetyltransferase mRNA and total mRNA in Escherichia coli
More LessThe functional stability of the chloramphenicol acetyltransferase (cat) mRNA, as well as the functional stability of the total mRNA pool, change during the course of Escherichia coli culture growth. mRNA half-lives are long during lag phase, decrease during the exponential phase and increase again during the stationary phase of the bacterial growth cycle. The half-lives of cat mRNA and total mRNA also increase three- to fourfold during amino acid starvation when compared to exponential culture growth. Even though the stability of the cat message changes about fourfold during culture growth, the amount of cat mRNA per cell mass does not vary significantly between the culture growth phases, indicating that there are compensating changes in cat gene transcription. Translation of cat mRNA also changes during culture growth. In exponential phase, the rate of cat translation is about 14-fold higher than when the culture is in stationary phase. This is in contrast to the fourfold increase in stability of cat mRNA in the stationary-phase culture compared to the exponentially growing culture and indicates that active translation is not correlated with increased mRNA stability. When a stationary-phase culture was diluted into fresh medium, there was a five- to sevenfold increase in CAT synthesis and a threefold increase in total protein synthesis in the presence or absence of rifampicin. These results suggest that while mRNA becomes generally more stable and less translated in the stationary-phase culture, the mRNA is available for immediate translation when nutrients are provided to the culture even when transcription is inhibited.
-
-
-
Expression of the second lysine decarboxylase gene of Escherichia coli
More LessCertain amino acids are substrates for two decarboxylase enzymes in Escherichia coli, one inducible by anaerobic growth at low pH and the other constitutive. In the case of lysine, an inducible decarboxylase (CadA) has been extensively characterized, but evidence for the existence of a second lysine decarboxylase is fragmentary and uncertain. This paper confirms that a second lysine decarboxylase is encoded by a locus (Idc) previously suggested to be a lysine decarboxylase gene on the basis of sequence comparisons. Overexpression of the cloned gene provided sufficient quantities of enzyme in cell-free extracts for preliminary examination of the properties of the Idc gene product, Ldc. The enzyme is active over a broad range of pH with an optimum at 7.6, much higher than that of CadA, about 5.5. The temperature optimum for both enzymes is similar, at about 52 °C, but Ldc is more readily inactivated by heat than CadA. Expression of Idc from its own promoter was very weak for cells growing in a variety of media, although a low level of lysine decarboxylase was present in cells that carried the Idc region on an oligo-copy plasmid when these were grown in minimal-glucose medium. Northern analysis of RNA extracted from such cells revealed a transcript whose length corresponded to that of the ldc gene, suggesting that ldc is normally transcribed from a promoter immediately upstream. However, most of the ldc mRNA was shorter, indicating degradation or premature termination. The ldc upstream sequence promoted transcription of a lacZ gene to which it was fused. Introduction of the upstream sequence as an insert in a multicopy vector increased transcription of the resident lacZ fusion. The low level of expression in single copy, the emergence of expression when the gene is present at moderate copy number, and the derepression by the upstream sequence in trans imply that this second lysine decarboxylase gene may not be constitutive but subject to specific repression by a factor which remains to be identified.
-
-
-
Mycoplasma hominis expresses two variants of a cell-surface protein, one a lipoprotein, and one not
More LessA protein similar to the previously characterized variable surface-exposed membrane protein P120 was identified (P120′), establishing that Mycoplasma hominis PG21 possesses a novel gene family. The gene, p120', was sequenced and found to have some distinctive properties including a putative start codon of GTG, rather than the common ATG codon, and a coding region with a high G+C content, characteristic of essential housekeeping genes in mycoplasmas. No sequence homology was found to known proteins. The genomic locations of the p120 and p120' genes were determined on the restriction map of five M. hominis strains by PFGE. The genes were localized in two separate regions separated by more than 6 kb. Genes as well as proteins corresponding to P120′ were identified in 24/24 M. hominis isolates tested and no size variation was detected. P120′ had a molecular mass of 98 kDa, 20 kDa smaller than P120 as estimated by SDS-PAGE. The protein was surface-exposed and associated with the mycoplasma membrane, but had predominantly hydrophilic characteristics upon Triton X-114 extraction. The N-terminal part of P120′ had a hydrophobic leader sequence without the characteristics of a prolipoprotein. This might explain the membrane association of the protein. Unlike P120, which is frequently recognized by sera of patients seropositive for M. hominis, P120′ was only rarely recognized. The conserved nature of the P120 gene family indicates that it has an essential, although currently unknown, function.
-
-
-
Distribution of repC plasmid-replication sequences among plasmids and isolates of Rhizobium leguminosarum bv. viciae from field populations
More LessThe distribution of four classes of related plasmid replication genes (repC) within three field populations of Rhizobium leguminosarum in France, Germany and the UK was investigated using RFLP, PCR-RFLP and plasmid profile analysis. The results suggest that the four repC classes are compatible: when two or more different repC sequences are present in a strain they are usually associated with different plasmids. Furthermore, classical incompatibility studies in which a Tn5-labelled plasmid with a group IV repC sequence was transferred into field isolates by conjugation demonstrated that group IV sequences are incompatible with each other, but compatible with the other repC groups. This supports the idea that the different repC groups represent different incompatibility groups. The same field isolates were also screened for chromosomal (plac12) and symbiotic gene (nodD-F region) variation. Comparison of these and the plasmid data suggest that plasmid transfer does occur within field populations of R. leguminosarum but that certain plasmid-chromosome combinations are favoured.
-
- Pathogenicity And Medical Microbiology
-
-
-
Loss-of-function mutations in the mtr efflux system of Neisseria gonorrhoeae
Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents (HAs) has been ascribed to the mtr (multiple transferable resistance) operon. This operon is composed of the mtrR gene, which encodes a transcriptional repressor (MtrR), and a three-gene complex (mtrCDE), which encodes cell envelope proteins (MtrC-MtrD-MtrE) that form an energy-dependent efflux pump. HA-hypersusceptible strains are often isolated from patients, but the genetic basis for such hypersusceptibility was heretofore unknown. The genetic basis of HA hypersusceptibility in laboratory-derived strains BR54 and BR87 was studied to learn if this trait could be linked to mutations in the mtr operon. Mutations in the mtrR gene of these strains that could be phenotypically suppressed by mutations in their mtrC or mtrD genes were identified. Thus, small deletions (4-10 bp) in the mtrC or mtrD genes of strains BR87 and BR54 that would result in the production of truncated efflux pump proteins that serve as a membrane fusion protein (MtrC) or transporter of HAs (MtrD) were found to be responsible for their HA-hypersusceptible property.
-
-
-
-
Extensive genetic diversity among clinical isolates of Streptococcus pyogenes serotype M5
More LessThe genetic diversity of clinical isolates of Streptococcus pyogenes serotype M5 has been characterized. Strain genotypes were defined by macrorestriction profile, 16S ribotype, emm gene subtype, insertion element IS 1239 profile, and exotoxin gene determinant. By these criteria, clinical isolates of M5 constituted a multiplicity of strain clusters rather than a homogeneous population as found for certain serotypes. Distance matrices and an unrooted tree were constructed from macrorestriction data with three rarely cutting endonucleases, determined by PFGE. A single IS1239 profile was common to 85% of isolates but there was great diversity of both ribotype and macrorestriction profile, and 18 different emm gene subtypes were detected by PCR-RFLP. DNA sequence analysis of the antigen-coding 5' (hypervariable) region of emm gene amplicons (about 240 bp) showed that 14/18 exhibited up to 6% divergence. Four amplicons had highly divergent sequences - corresponding to those previously determined for emm 6, emm 11, emm 18 and emm 77. Further serological and hybridization studies were used to analyse the discrepancy between the Lancefield serotype of these strains (W5) and their emm genotype. Overall, this study shows a high degree of genetic diversity in serotype M5, with implications for the Lancefield scheme itself, for the epidemiology of group A streptococci, and for recombinant DNA strategies for M protein-based vaccine development.
-
- Physiology And Growth
-
-
-
Magnesium transport in Salmonella typhimurium: biphasic magnesium and time dependence of the transcription of the mgtA and mgtCB loci
More LessSalmonella typhimurium has three distinct Mg2+ transport systems, the constitutive high-capacity CorA transporter and two P-type ATPases, MgtA and MgtB, whose transcription is repressed by normal concentrations of Mg2+ in the growth medium. The latter Mg2+-transporting ATPase is part of a two-gene operon, mgtCB, with mgtC encoding a 23 kDa protein of unknown function. Transcriptional regulation using fusions of the promoter regions of mgtA and mgtCB to luxAB showed a biphasic time and Mg2+ concentration dependence. Between 1 and 6 h after transfer to nitrogen minimal medium containing defined concentrations of Mg2+, transcription increased about 200-fold for mgtCB and up to 400-fold for mgtA, each with a half-maximal dependence on Mg2+ of 0.5 mM. Continued incubation revealed a second phase of increased transcription, up to 2000-fold for mgtCB and up to 10000-fold for mgtA. This secondary increase occurred between 6 and 9 h after transfer to defined medium for mgtCB but between 12 and 24 h for mgtA and had a distinct half-maximal dependence for Mg2+ of 0.01 mM. A concomitant increase of at least 1000-fold in uptake of cation was seen between 8 and 24 h incubation with either system, showing that the transcriptional increase was followed by functional incorporation of large amounts of the newly synthesized transporter into the membrane. Regulation of transcription by Mg2+ was not dependent on a functional stationary-phase sigma factor encoded by rpoS, but it was dependent on the presence of a functional phoPQ two-component regulatory system. Whereas mgtCB was completely dependent on regulation via phoPQ, the secondary Sate Mg2+-dependent phase of mgtA transcription was still evident in strains carrying a mutation in either phoP or phoQ, albeit substantially diminished. Several divalent cations blocked the early phase of the increase in transcription elicited by the decrease in Mg2+ concentration, including cations that inhibit Mg2+ uptake (Co2+, Ni2+ and Mn2+) and those which do not (Ca2+ and Zn2+). In contrast, the second later phase of the transcriptional increase was not well blocked by any cation except those which inhibit uptake. Overall, the data suggest that at least two distinct mechanisms for transcriptional regulation of the mgtA and mgtCB loci exist.
-
-
-
-
Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress
More LessTrehalose is an enigmatic compound that accumulates in Saccharomyces cerevisiae and has been implicated in survival under various stress conditions by acting as membrane protectant, as a supplementary compatible solute or as a reserve carbohydrate that may be mobilized during stress. In this study, specific mutants in trehalose metabolism were used to evaluate whether trehalose contributes to survival under severe osmotic stress and generates the compatible solute glycerol under moderate osmotic stress. The survival under severe osmotic stress (0.866 a W, NaCI or sorbitol) of mutants was compared to that of the wild-type strain when cultivated to either the mid-exponential or the stationary growth phase on glucose, galactose or ethanol. Stationary-phase cells survived better than exponential-phase cells. The death rates of ethanol-grown cells were lower than those of galactose-grown cells, which in turn survived better than glucose-grown cells. There was a strong relationship between intracellular trehalose levels and resistance to osmotic stress. The mutant strains unable to produce trehalose (tps1Δ tps2Δ and tps1Δ hxk2 Δ) were more sensitive to severe osmotic stress (0.866 a W) than the isogenic wild-type strain, confirming a role for trehalose in survival. Hyperaccumulation of trehalose found in the nth1Δ and the nth1Δ gpd1Δ mutant strains, however, did not improve survival rates compared to the wild-type strain. When wild-type, nth1Δ and nth1Δ gpd1Δ cells were exposed to moderate osmotic stress (0.98 and 0.97 a W, NaCI), which permits growth, glycerol production did not appear to be related to the intracellular trehalose levels although glycerol levels increased more rapidly in nth1Δ cells than in wild-type cells during the initial response to osmotic stress. These data indicate that trehalose does not act as a reserve compound for glycerol synthesis under these conditions. No evidence was found for solutes other than glycerol and trehalose being significant for the survival of or growth by S. cerevisiae under osmotic stress conditions.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)