1887

Abstract

SUMMARY: To study the functions of the uncharacterized open reading frames identified in the Bacillus subtih genome, several vectors were constructed t o perform insertional mutagenesis in the chromosome. All the pMUTlN plasmids carry a lac2 reporter gene and an inducible Pspac promoter, which is tightly regulated and tan be induced about 1000-fold. The integration of a pMUTlN vector into the target gene has three consequences: (1) the target gene is inactivated; (2) lac2 becomes transcriptionally fused t o the gene, allowing its expression pattern to be monitored; (3) the Pspac promoter controls the transcription of downstream genes in an IPTG-dependent fashion. This last feature is important because B. subti/is genes are often organized in operons. The potential polar effects generated by the integration of the vectors can be alleviated by addition of IPTG. Also, conditional mutants of essential genes can be obtained by integrating pMUTlN vectors upstream of the target gene. The vectors are currently being used for systematic inactivation of genes without known function within the B. subtilis European consortium. pMUTlN characteristics and the inactivation of eight genes in the resA-serA region of the chromosome are presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-144-11-3097
1998-11-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/144/11/mic-144-11-3097.html?itemId=/content/journal/micro/10.1099/00221287-144-11-3097&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis.. J Bacteriol 81:741–746
    [Google Scholar]
  2. Azevedo V., Sorokin A., Ehrlich S.D., Serror P. 1993; The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoVAF and serA genetic loci.. Mol Microbiol 10:397–405
    [Google Scholar]
  3. Barilla D., Caramori T., Galizzi A. 1994; Coupling of flagellin gene transcription to flagellar assembly in Bacillus subtilis.. J Bacteriol 176:4558–4564
    [Google Scholar]
  4. Birnboim H.C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA.. Nucleic Acids Res 7:1513–1523
    [Google Scholar]
  5. Chang Y.C., Kadokura H., Yoda K., Yamasaki M. 1996; Secretion of active subtilisin YaB by a simultaneous expression of separate pre-pro and pre-mature polypeptides in Bacillus subtilis.. Biochem Biophys Res Commun 219:463–468
    [Google Scholar]
  6. Doolittle R. 1998; Microbial genomes opened up.. Nature 392:339–342
    [Google Scholar]
  7. Khasanov F.K., Zvingila D.J., Zainullin A.A., Prozorov A.A., Bashkirov V.I. 1992; Homologous recombination between plasmid and chromosomal DNA in Bacillus subtilis requires approximately 70 bp of homology.. Mol Gen Genet 234:494–497
    [Google Scholar]
  8. Kumar V., Fonstein M., Haselkorn R. 1996; Bacterium genome sequence.. Nature 381:653–654
    [Google Scholar]
  9. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis.. Nature 390:249–256
    [Google Scholar]
  10. Lehming N., Sartorius J., Niemolier M., Genenger G., Wilcken-Bergmann B., Muller-Hill B. 1987; The interaction of the recognition helix of lac repressor with lac operator.. EMBO J 6:3145–3153
    [Google Scholar]
  11. Link A.J., Phillips D., Church G.M. 1997; Methods for generating precise deletions and insertions in the genome of wild- type Escherichia coli: application to open reading frame characterization.. J Bacteriol 179:6228–6237
    [Google Scholar]
  12. Lu Y., Turner R.J., Switzer R.L. 1995; Roles of the three transcriptional attenuators of the Bacillus subtilis pyrimidine biosynthetic operon in the regulation of its expression.. J Bacteriol 177:1315–1325
    [Google Scholar]
  13. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Msadek T., Kunst F., Henner D., Klier A., Rapoport G., Dedonder R. 1990; Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU.. J Bacteriol 172:824–834
    [Google Scholar]
  15. Oehler S., Amouyal M., Kolkhof P., von Wilcken-Bergmann B., Muller-Hill B. 1994; Quality and position of the three lac operators of E. coli define efficiency of repression.. EMBO J 13:3348–3355
    [Google Scholar]
  16. Oliver S. 1996; A network approach to the systematic analysis of yeast gene function.. Trends Genet 12:241–242
    [Google Scholar]
  17. Perego M. 1993; Integrational vectors for genetic manipulation in B. subtilis. . In Bacillus subtilis and Other Gram-positive Bacteria pp. 615–624 Edited by Sonenshein A.L, Hoch J.A, Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Perkins J.B., Youngman J.C. 1986; Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis.. Proc Natl Acad Sci USA 83140–144
    [Google Scholar]
  19. Peschke U., Beuk V., Bujard H., Gentz R., Le Grice S. 1985; Efficient utilization of Escherichia coli transcriptional signals in Bacillus subtilis.. J Mol Biol 186:175–182
    [Google Scholar]
  20. te Riele H., Michel B., Ehrlich S.D. 1986; Single stranded plasmid DNA in Bacillus subtilis and Staphylococcus aureus.. Proc Natl Acad Sci USA 832541–2545
    [Google Scholar]
  21. Scholtissek S., Grosse F. 1987; A cloning cartridge of λ t0terminator.. Nucleic Acids Res 15:3185
    [Google Scholar]
  22. Shoemaker D.D., Lashkari D.A., Morris D., Mittmann M., Davis R.W. 1996; Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy.. Nat Genet 14:450–456
    [Google Scholar]
  23. Smith V., Botstein D., O´Brown P. 1995; Genetic footprinting: a genomic strategy for determining a genes function given its sequence.. Proc Natl Acad Sci USA 926479–6483
    [Google Scholar]
  24. Sorokin A., Zumstein E., Azevedo V., Ehrlich S.D., Serror P. 1993; The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data.. Mol Microbiol 10:385–395
    [Google Scholar]
  25. Spradling A.C, Stern D. M., Kiss I., Roote J., Laverty T., Rubin G.M. 1995; Gene disruptions using P transposable elements: an integral component of the Drosophila genome project.. Proc Natl Acad Sci USA 9210824–10830
    [Google Scholar]
  26. Stragier P., Bonamy C., Karmazyn-Campelli C. 1988; Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression.. Cell 52:697–704
    [Google Scholar]
  27. Straney S.B., Crothers D.M. 1987; Lac repressor is a transient gene-activating protein.. Cell 51:699–707
    [Google Scholar]
  28. Vagner V., Ehrlich S.D. 1988; Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome.. J Bacteriol 70:3978–3982
    [Google Scholar]
  29. Voelker U., Dufour A., Haldenwang W.G. 1995; The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of sigma B.. J Bacteriol 177:114–122
    [Google Scholar]
  30. Yansura D.G., Henner D.J. 1984; Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis.. Proc Natl Acad Sci USA 81439–443
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-144-11-3097
Loading
/content/journal/micro/10.1099/00221287-144-11-3097
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error