1887

Abstract

Summary: sp. strain IGTS8 (ATCC 53968) is able to utilize dibenzothiophene (DBT) as a sole source of sulphur. The carbon skeleton of DBT is not metabolized and is conserved as 2-hydroxybiphenyl (HBP), which accumulates in the medium. This phenotype is due to the expression of the plasmid-encoded DBT-desulphurization () operon, which encodes three proteins, , B and C. In this paper it is shown, using [S]DBT radiolabelling studies, that sulphur is released in the form of inorganic sulphite. The pathway of DBT desulphurization is described in detail. In summary, DszC catalyses the stepwise -oxidation of DBT, first to dibenzothiophene 5-oxide (DBTO) and then to dibenzothiophene 5,5-dioxide (DBTO); DszA catalyses the conversion of DBTO to 2-(2′-hydroxyphenyl)benzene sulphinate (HBPSi) and DszB catalyses the desulphination of HBPSi to give HBP and sulphite. Studies with cell-free extracts show that DszA and DszC, but not DszB, require NADH for activity. O-labelling studies show that each incorporated oxygen atom is derived directly from molecular oxygen. These results are consistent with the role of DszC as a mono-oxygenase, of DszA as an apparently unique enzyme which catalyses the reductive hydroxylation of DBTO leading to cleavage of the thiophene ring, and of DszB as an aromatic sulphinic acid hydrolase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-9-2961
1997-09-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/9/mic-143-9-2961.html?itemId=/content/journal/micro/10.1099/00221287-143-9-2961&mimeType=html&fmt=ahah

References

  1. Ballou D. P. 1984; Flavoprotein mono-oxygenases. In Flavins and Flavoproteins pp. 606–615 Edited by Bray R. C., Engel P. C., Mayhew S. G. Berlin: Walter de Gruyter;
    [Google Scholar]
  2. Beutler H.-O. 1987; Sulfite determination: sulfite oxidase. Methods Enzymol 147:11–14
    [Google Scholar]
  3. CONCAWE 1994; Motor vehicle emission regulations and fuel specifications, 1994 update. Report no. 4/94, CONCAWE (Brussels).
  4. Denome S. A., Olson E. S., Young K. D. 1993; Identification and cloning of genes involved in specific desulphurisation of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 59:2837–2843
    [Google Scholar]
  5. Denome S. A., Oldfield C., Nash L. J., Young K. 1994; Characterisation of the desulfurization genes from Rhodococcus sp. strain IGTS8. J Bacteriol 176:6707–6716
    [Google Scholar]
  6. Dordick J. S., Keungarp R., McEldoon J. P. 1991; Enzymatic catalysis on coal-related compounds in organic media: kinetics and potential commercial applications. Resour Conserv Recycl 5:195–209
    [Google Scholar]
  7. Gallagher J. R., Olson E. S., Stanley D. C. 1993; Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol Lett 107:31–36
    [Google Scholar]
  8. Gray K. A., Pogrebinsky O. S., Mrachko G. T., Xi L., Monticello D. J., Squires C. H. 1996; Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709
    [Google Scholar]
  9. Hanson G., Kemp D. S. 1981; Convenient routes to 4,4 ̋ functionalised o-terphenyls and 2,2ʹ functionalised biphenyls. J Org Chem 46:5441–5443
    [Google Scholar]
  10. Holland H. B. 1988; Chiral sulfoxidation by biotransformation of organic sulphides. Chem Rev 88:473–485
    [Google Scholar]
  11. Izumi Y., Ohshiro T., Ogino H., Hine Y., Shimao M. 1994; Selective desulfurization of dibenzothiophene by Rhodococcus erythropolis strain D-1. Appl Environ Microbiol 60:223–226
    [Google Scholar]
  12. Kayser K. J., Bielaga-Jones B. A., Jackowski K., Odusan O., Kilbane J. J. 1993; Utilization of organosulphur compounds by axenic and mixed cultures of Rhodococcus rhodochrous strain IGTS8. J Gen Microbiol 139:3123–3129
    [Google Scholar]
  13. Kice J., L & Bowers K. W. 1962; The mechanism of the disproportionation of sulfinic acids. J Am Chem Soc 84:605–610
    [Google Scholar]
  14. Lei B., Tu S.-C. 1996; Gene overexpression, purification and identification of a desulfurization enzyme from Rhodococcus sp. strain IGTS8 as a sulfide/sulfoxide monooxygenase. J Bacteriol 178:5699–5705
    [Google Scholar]
  15. Li M. Z., Squires C. H., Childs J. D. 1996; Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8. J Bacteriol 178:6409–6418
    [Google Scholar]
  16. Oae S. 1991 Organic Sulphur Chemistry: Structure and Mechanism p. 155 Boca Raton, FL: CRC Press;
    [Google Scholar]
  17. Ohshiro T., Hine Y., Izumi Y. 1994; Enzymatic desulphurization of dibenzothiophene by a cell-free system of Rhodococcus erythropolis D-1. FEMS Microbiol Lett 118:341–344
    [Google Scholar]
  18. Ohshiro T., Hine Y., Izumi Y. 1996a; Desulfurization of dibenzothiophene derivatives by whole cells of Rhodococcus erythropolis strain H-2. FEMS Microbiol Lett 142:65–70
    [Google Scholar]
  19. Ohshiro T., Suzuki K., Izumi Y. 1996b; Regulation of dibenzothiophene-degrading activity of Rhodococcus erythropolis strain D-1. J Ferment Bioeng 81:121–124
    [Google Scholar]
  20. Olson E. S., Stanley D. C., Gallagher J. R. 1993; Characterisation of intermediates in the microbial desulfurization of dibenzothiophene. Energy Fuels 7:159–164
    [Google Scholar]
  21. Omori T., Monna L., Saiki Y., Kodama T. 1992; Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl Environ Microbiol 58:911–915
    [Google Scholar]
  22. Piddington C. S., Kovacevich B. R., Rambosek J. 1995; Sequence and molecular characterisation of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 61:468–475
    [Google Scholar]
  23. Squires T. G., Venier C. G., Hodgson B. A., Chang L. W. 1981; Preparation, characterisation and flash vacuum pyrolysis of dibenz[c,e][l,2]oxathiin 6-oxide (biphenylene sultine). J Org Chem 46:2373–2376
    [Google Scholar]
  24. Xi L., Squires C. H., Monticello D., J & Childs J. D. 1997; A flavin reductase stimulates DszA and DszC proteins of Rhodococcus erythropolis IGTS8 in vitro. Biochem Biophys Res Commun 230:73–75
    [Google Scholar]
/content/journal/micro/10.1099/00221287-143-9-2961
Loading
/content/journal/micro/10.1099/00221287-143-9-2961
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error