1887

Abstract

Summary: By using MudJ (Kan, )-directed operon fusion technology, mutants of whose gene expression is induced under anaerobic growth conditions were isolated. Characterization of their phenotypes and regulatory properties revealed that two of the mutants were unable to use nitrate as a terminal electron acceptor in the absence of oxygen, suggesting that they were defective in nitrate reductase activity. Anaerobic induction of these fusions did not further increase in response to nitrate. Strains carrying an additional mutation in were constructed. They showed a lower level of β-galactosidase expression both aerobically and anaerobically; however, the ratios of anaerobic induction remained unaltered. These MudJ insertions mapped to the 17-19 min region of the chromosome. Based upon their phenotypes and mapping, one of the mutants probably possessed a :: MudJ insertion and the other a :: MudJ insertion. A third mutant was unable to use either nitrate or fumarate as a terminal electron acceptor. All three mutants showed a reduced ability to enter into and proliferate within HEp-2 epithelial cells. The mutation enhanced entry and proliferation of both the wild-type cells and the three mutants. Taken together, these results suggest that anaerobic respiration plays a role in invasiveness.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-8-2665
1997-08-01
2021-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/8/mic-143-8-2665.html?itemId=/content/journal/micro/10.1099/00221287-143-8-2665&mimeType=html&fmt=ahah

References

  1. Benson N. R., Goldman B. S. 1992; Rapid mapping in Salmonella typhimurium with Mud-P22 prophages. J Bacteriol 174:1673–1681
    [Google Scholar]
  2. Bukhari A. Y., Ljungquist E. 1977; Bacteriophage Mu: methods for cultivation and use. . In DNA Insertion Elements, Plasmids and Episomes pp. 749–756 . Edited by Bukhari A. Y., Shapiro J. A., Adnya S. L. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  3. Contreras I., Obreque V. H., Tesser B., Mora G. C. 1994; Mini-Mu technology in Salmonella typhi: isolation of stable MudJ operon fusions by cis complementation. Biol Res 27:233–239
    [Google Scholar]
  4. Contreras I., Obreque V. H., Blanco L. P., Toro C. S., Mora G. C. 1995a; Anaerobically induced Salmonella typhi genes are involved in entry to and proliferation within human-derived cell lines. South east Asian J Trop Med Public Health 26:110–117
    [Google Scholar]
  5. Contreras I., Muñoz L., Toro C. S., Mora G. C. 1995b; Heterologous expression of Escherichia coli porin genes in Salmonella typhi Ty2: regulation by medium osmolarity, temperature and oxygen availability. FEMS Microbiol Lett 133:105–111
    [Google Scholar]
  6. Di Rita V. J., Mekalanos J. J. 1989; Genetic regulation of bacterial virulence. Annu Rev Genet 23:455–482
    [Google Scholar]
  7. Dorman C. J. 1991; DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun 59:745–749
    [Google Scholar]
  8. Ernst R. K., Dombroski D. M., Merrick J. M. 1990; Anaerobiosis, type I fimbriae and growth phase are factors that affect invasion of HEp-2 cells by Salmonella typhimurium. . Infect Immun 58:2014–2016
    [Google Scholar]
  9. Falkow S., Isberg R. R., Portnoy D. A. 1992; The interaction of bacteria with mammalian cells. Annu Rev Cell Biol 8:333–363
    [Google Scholar]
  10. Finlay B. B., Falkow S. 1989; Salmonella as an intracellular parasite. Mol Microbiol 3:1833–1841
    [Google Scholar]
  11. Garzón A., Li J., Flores A., Casadesus J., Stewart V. 1992; Molybdenum cofactor (chlorate-resistant) mutants of Klebsiella pneumoniae M5a1 can use hypoxanthine as the sole nitrogen source. J Bacteriol 174:6298–6302
    [Google Scholar]
  12. Gennis R. B., Stewart V. 1996; Energy production. Respiration. . In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology 2nd edn, pp. 217–261 . Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  13. Glaser J. H., DeMoss J. A. 1971; Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. . J Bacteriol 108:854–860
    [Google Scholar]
  14. Graham A., Jenkins H. E., Smith N. H., Mandrand-Berthelot M. A., Haddock B. A., Boxer D. H. 1980; The synthesis of formate dehydrogenase and nitrate reductase proteins in various fdh and chl mutants of Escherichia coli. . FEMS Microbiol Lett 7:145–151
    [Google Scholar]
  15. Groisman E. A., Saier M. H. 1990; Salmonella virulence: new clues to intramacrophage survival. Trends Biochem Sci 15:30–33
    [Google Scholar]
  16. Guest J. R. 1995; The Leeuwenhoek Lecture, 1995. Adaptation to life without oxygen. Phil Trans R Soc Lond B 350:189–202
    [Google Scholar]
  17. Jamieson D. J., Higgins C. F. 1986; Two genetically distinct pathways for transcriptional regulation of anaerobic gene expression in Salmonella typhimurium. . J Bacteriol 168:389–397
    [Google Scholar]
  18. Johann S., Hinton S. M. 1987; Cloning and nucleotide sequence of the chlD locus. J Bacteriol 169:1911–1916
    [Google Scholar]
  19. Johnson J. L., Indermaur L. W., Rajagopalan K. V. 1991; Molybdenum cofactor biosynthesis in Escherichia coli. Requirement of the chlB gene product for the formation of molybdopterin guanine dinucleotide. J Biol Chem 266:12140–12145
    [Google Scholar]
  20. Jones B. D., Falkow S. 1994; Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun 6:3745–3752
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  22. Lee C. A., Falkow S. 1990; The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci USA 87:4304–4308
    [Google Scholar]
  23. Lee C. A., Jones B. D., Falkow S. 1992; Identification of a Salmonella typhimurium invasion locus by selection of hyper-invasive mutants. Proc Natl Acad Sci USA 89:1847–1851
    [Google Scholar]
  24. Lin E. C. C., Kuritzkes D. R. 1987; Pathways for anaerobic electron transport. . In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp. 201–221 . Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Lissner C. R., Swanson R. N., O'Brien A. D. 1983; Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol 131:3006–3013
    [Google Scholar]
  26. Lobos S. R., Mora G. C. 1991; Alteration in the electrophoretic mobility of OmpC due to variations in the ammonium persulfate concentration in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Electrophoresis 12:448–450
    [Google Scholar]
  27. MacGregor C. H., Schnaitman C. A. 1971; Alterations in the cytoplasmic membrane proteins of various chlorate-resistant mutants of Escherichia coli. . J Bacteriol 108:564–570
    [Google Scholar]
  28. Mahan M. J., Slauch J. M., Hanna P. C., Camilli A., Tobias J. W., Waldor M. K., Mekalanos J. J. 1993; Selection for bacterial genes that are specifically induced in host tissues: the hunt for virulence factors. Infect Agents Dis 2:263–268
    [Google Scholar]
  29. Maloy S. R. 1990 Experimental Techniques in Bacterial Genetics Boston, MA: Jones & Bartlett Publishers;
    [Google Scholar]
  30. Mekalanos J. J. 1992; Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7
    [Google Scholar]
  31. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Miller J. B., Scott D. J., Amy N. K. 1987; Molybdenum-sensitive transcriptional regulation of the chlD locus of Escherichia coli. . J Bacteriol 169:1853–1860
    [Google Scholar]
  33. Miller J. J., Mekalanos J. J., Falkow S. 1989; Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243:916–922
    [Google Scholar]
  34. Moors M. A., Portnoy D. A. 1995; Identification of bacterial genes that contribute to survival and growth in an intracellular environment. Trends Microbiol 3:83–85
    [Google Scholar]
  35. Morpeth F. F., Boxer D. H. 1985; Kinetic analysis of respiratory nitrate reductase from Escherichia coli K12. Biochemistry 24:40–46
    [Google Scholar]
  36. O'Callaghan D., Charbit A. 1990; High efficiency transformation of Salmonella typhimurium and Salmonella typhi by electroporation. Mol Gen Genet 223:156–158
    [Google Scholar]
  37. Pascal M. C., Chippaux M. 1982; Involvement of a gene of the chlE locus in the regulation of the nitrate reductase operon. Mol Gen Genet 185:334–338
    [Google Scholar]
  38. Pascal M. C., Burini J. F., Ratouchniack J., Chippaux M. 1982; Regulation of the nitrate reductase operon: effects of mutations in chlA, B, D and E genes. Mol Gen Genet 188:103–106
    [Google Scholar]
  39. Pitterle D. M., Rajagopalan K. V. 1989; Two proteins encoded at the chlA locus constitute the converting factor of Escherichia coli chlA1. . J Bacteriol 171:3373–3378
    [Google Scholar]
  40. Poole R. K., Ingledew W. J. 1987; Pathways of electrons to oxygen. . In Escherichia coli and Salmonella typhimurium, Cellular and Molecular Biology pp. 170–200 . Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  41. Rajagopalan K. V., Johnson J. L. 1992; The pterin molybdenum cofactors. J Biol Chem 267:10199–10202
    [Google Scholar]
  42. Russell G B., Thaler D. S., Dahlquist F. W. 1989; Chromosomal transformation of Escherichia coli recD strains with linearized plasmids. J Bacteriol 171:2609–2613
    [Google Scholar]
  43. Sanderson K. E., Hessel A., Rudd K. E. 1995; Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev 59:241–303
    [Google Scholar]
  44. Schiemann D. A., Shope S. R. 1991; Anaerobic growth of Salmonella typhimurium results in increased uptake by Henle 407 epithelial and mouse peritoneal cells in vitro and repression of a major outer membrane protein. Infect Immun 59:437–440
    [Google Scholar]
  45. Scott D. H., Amy N. K. 1989; Molybdenum accumulation in chlD mutants of Escherichia coli. . J Bacteriol 171:1284–1287
    [Google Scholar]
  46. Sperl G. T., DeMoss J. A. 1975; chlD gene function in molybdate activation of nitrate reductase. J Bacteriol 122:1230–1238
    [Google Scholar]
  47. Spiro S., Guest J. R. 1991; Adaptive responses to oxygen limitation in Escherichia coli. . Trends Biochem Sci 16:310–314
    [Google Scholar]
  48. Stewart V. 1988; Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev 52:190–232
    [Google Scholar]
  49. Stewart V. 1993; Nitrate regulation of anaerobic respiratory gene expression in Escherichia coli. . Mol Microbiol 9:423–434
    [Google Scholar]
  50. Stewart V., MacGregor C. H. 1982; Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol 151:788–799
    [Google Scholar]
  51. Strauch K. L., Lenk J. B., Gamble B. L., Miller G G. 1985; Oxygen regulation in Salmonella typhimurium . J Bacteriol 161:673–680
    [Google Scholar]
  52. Tartera C., Metcalf E. S. 1993; Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect Immun 61:3084–3089
    [Google Scholar]
  53. Tartera C., van der Sluijs A., Metcalf E. S. 1993; Environmental regulation of adherence and invasion of S. typhi . Abstracts of the 93rd General Meeting of the American Society for Microbiology, Abstract B80
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-8-2665
Loading
/content/journal/micro/10.1099/00221287-143-8-2665
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error