1887

Abstract

Summary: An o-xylene-utilizing strain B3, was isolated from enrichments with o-xylene. The pathway for o-xylene degradation was investigated by simultaneous adaptation experiments, studies of product formation by a mutant and fortuitous oxidation studies using trimethylbenzene isomers as substrates. Two pathways were found to operate simultaneously and both were inducible. The first pathway involved the oxidation of a methyl group to form 2-methylbenzyl alcohol, followed by oxidation via the corresponding acid to 3-methylcatechol. The second pathway involved oxidation of the aromatic ring to form a dimethylcatechol. The bulk of the evidence suggests that the initial reaction was catalysed by a monooxygenase rather than a dioxygenase, and that 2,3-dimethylphenol was produced as an intermediate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-143-7-2321
1997-07-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/143/7/mic-143-7-2321.html?itemId=/content/journal/micro/10.1099/00221287-143-7-2321&mimeType=html&fmt=ahah

References

  1. Baggi G., Barbieri P., Galli E., Tollari S. 1987; Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl Environ Microbiol 54:2129–2132
    [Google Scholar]
  2. Bayly R. C., Dagley S., Gibson D. T. 1966; The metabolism of cresol by species of Pseudomonas . Biochem J 101:293–301
    [Google Scholar]
  3. Boyd D. R., McMordie R. A. S., Porter P., Dalton H., Jenkins R. O., Howarth O. W. 1987; Metabolism of bicyclic aza-arenes by Pseudomonas putida to yield vicinal c/’s-dihydrodiols and phenols. J Chem Soc Chem Commun 1987:1722–1724
    [Google Scholar]
  4. Boyd D. R., Blacker J., Byrne B., Dalton H., Hand M. V., Kelly S. C., More O’Ferrall R. A., Rao S. N., Sharma N. D., Sheldrake G. N. 1994; Acid-catalyzed aromatisation of benzene cis-1,2- dihydrodiols: a carbocation transition state poorly stabilised by resonance. J Chem Soc Chem Commun 1994:313–314
    [Google Scholar]
  5. Colby J., Stirling D. I., Dalton H. 1977; The soluble methane monooxygenase from Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402
    [Google Scholar]
  6. Dagley S., Evans W. C., Ribbons D. W. 1960; New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature 188:560–566
    [Google Scholar]
  7. Dalton H., Wilkins P. C., Jiang Y. 1993 Structure and mechanism of action of the hydroxylase of soluble methane monooxygenase. . In Microbiol Growth on C1, Compounds , pp. 65–80 . Edited by Murrell J. C., Kelly D. P. Andover: Intercept;
    [Google Scholar]
  8. Fredricks K. M. 1967; Products of the oxidation of n-decane by Pseudomonas aeruginosa and Mycobacterium rhodochrous . Antonie Leeuwenhoek 33:41–48
    [Google Scholar]
  9. Galli E., Barbieri P., Bestetti G. 1992 Potential of pseudomonads in the degradation of methylbenzenes. . In Pseudomonas Molecular Biology and Biotechnology , pp. 268–276 . Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Gibson D. T., Subramanian V. 1984 Microbial degradation of aromatic hydrocarbons. . In Microbial Degradation of Organic Compounds , pp. 181–252 . Edited by Gibson D. T. New York: Marcel Dekker;
    [Google Scholar]
  11. Gibson D. T., Koch J. R., Schuld C. L., Kallio R. E. 1968; Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry 7:3795–3802
    [Google Scholar]
  12. Gibson D. T., Hensley M., Yoshioka H., Mabry T. J. 1970; Formation of ( + )-cis-2,3-dihydroxy-l-methylcyclohexa-4,6- diene from toluene by Pseudomonas putida . Biochemistry 9:1626–1630
    [Google Scholar]
  13. Gibson D. T., Zylstra G. J., Chauhan S. 1990 Biotransformations catalysed by toluene dioxygenase from Pseudomonas putida FI. . In Pseudomonas: Biotransformations, Pathogenesis and Evolving Biotechnology , pp. 121–132 . Edited by Silver S., Chakrabarty A. M., Inglewski B., Kaplan S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Grossebuter W., Reiff I., Rehm H. J. 1979; Oxidation of n- tetradecane by some Streptomyces spp. Eur J Appl Microbiol Biotechnol 8:139–141
    [Google Scholar]
  15. Helmbrook D. C., Sligar S. G. 1981; Multiple mechanisms of cytochrome P450-catalysed substrate hydroxylations. Biochem Biophys Res Commun 99:530–535
    [Google Scholar]
  16. Higson F. K., Focht D. D. 1992; Degradation of 2- methylbenzoic acid by Pseudomonas cepacia MB2. Appl Environ Microbiol 58:194–200
    [Google Scholar]
  17. Jenkins R. O., Stephens G. M., Dalton H. 1987; Evidence for more than one form of toluene ds-glycol dehydrogenase from Pseudomonas putida NCIB 11767 . FEMS Microbiol Lett 44:209–214
    [Google Scholar]
  18. Klein D. A., Henning F. A. 1969; Role of alcoholic intermediates in formation of isomeric ketones from n- hexadecane by a soil Arthrobacter . Appl Microbiol 17:676–681
    [Google Scholar]
  19. Kok M., Shaw J. P., Harayama S. 1992 Comparison of two hydrocarbon monooxygenases of Pseudomonas putida. . In Pseudomonas Molecular Biology and Biotechnology , pp. 214–222 . Edited by Galli E., Silver S., Witholt B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Kukor J. J., Olsen R. H. 1990; Molecular cloning, characterization, and regulation of a Pseudomonas pickettii PKOl gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAOlc. J Bacterial 172:4624–4630
    [Google Scholar]
  21. Leadbetter E. R., Foster J. W. 1960; Bacterial oxidation of gaseous alkanes. Arch Mikrobiol 35:92–104
    [Google Scholar]
  22. Mahajan M. C., Phale P. S., Vaidyanathan C. S. 1994; Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86. Arch Microbiol 161:425–433
    [Google Scholar]
  23. May S. W., Abbott B. J. 1972; Enzymatic epoxidation I. Alkene epoxidation by the w-hydroxylation system of Pseudomonas oleovorans . Biochem Biophys Res Commun 48:1230–1234
    [Google Scholar]
  24. O’Donnell K. J., Williams P. A. 1991; Duplication of both xyl catabolic operons on TOL plasmid pWW15. J Gen Microbiol 137:2831–2838
    [Google Scholar]
  25. Schraa G., Bethe B. M., van Neerven A. R. W., van den Tweel W. J. J., van der Wende E., Zehnder A. J. B. 1987; Degradation of 1,2-dimethylbenzene by Corynebacterium strain C125. Antonie Leeuwenhoek 53:159–170
    [Google Scholar]
  26. Shields M. S., Montgomery S. O., Chapman P. J., Cuskey S. M., Pritchard P. H. 1989; Novel pathway of toluene catabolism in the trichloroethylene degrading bacterium G4. Appl Environ Microbiol 55:1624–1629
    [Google Scholar]
  27. Stephens G. M., Dalton H. 1986; The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria. J Gen Microbiol 132:2453–2462
    [Google Scholar]
  28. Stephens G. M., Dalton H. 1987; The effect of lipophilic weak acids on the segregational stability of TOL plasmids in Pseudomonas putida . J Gen Microbiol 133:1891–1899
    [Google Scholar]
  29. Wackett L. P., Kwart L. D., Gibson D. T. 1988; Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida . Biochemistry 1988:1360–1367
    [Google Scholar]
  30. Wende P., Pfleger K., Bernhardt F.-H. 1982; Dioxygen activation by putidamonooxin: substrate-modulated reaction of activation oxygen. Biochem Biophys Res Commun 104:527–532
    [Google Scholar]
  31. Williams P. A., 8i Murray K. 1974; Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423
    [Google Scholar]
  32. Yen K.-M., Karl M. R., Blatt L. M., Simon M. J., Winter R. B., Fausset P. R., Lu H. S., Harcourt A. A., Chen K. K. 1991; Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J Bacteriol 173:5315–5327
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-143-7-2321
Loading
/content/journal/micro/10.1099/00221287-143-7-2321
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error