1887

Abstract

SUMMARY: The products of condensing organic hydroxyl groups (ROH) with the mineral acids (hydrochloric, nitric, phosphoric and sulphuric) collectively constitute a major part of the output of the synthetic organic chemical industry, with a wide diversity of applications including surfactants, pesticides, herbicides, dyes, methylating agents, explosives and pharmaceuticals. Compounds containing similar or related structures also occur as natural products. Phosphate esters are, of course, exceptional for their ubiquity in the living world, ranging from the simple intermediary metabolites of glycolysis, through phospholipids, to the backbone of DNA. Sulphate esters too are abundant (Dodgson , 1982) and naturally occurring halogenated compounds are also being detected in increasing numbers (for examples, see Strunz, 1984; Engvild, 1986; Neidleman & Geigert, 1986; Harper & Hamilton, 1988). It is therefore no surprise that living organisms have evolved phosphatase (Boyer, 1971), sulphatase (Dodgson & Rose, 1975; Dodgson , 1982) and dehalogenase (Neilson, 1990; Hardman, 1991) enzyme systems for initiating biodegradation of such compounds by the removal of the mineral moiety. In marked contrast, we are unable to find any examples of naturally occurring nitrate esters, so that the introduction of such compounds into the environment during their industrial production and usage constitutes a true xenobiotic challenge to microorganisms. This raises intriguing questions about microbial capability for biotransformation/biodegradation of nitrate esters, not only from an academic viewpoint but also because of the wide industrial usage of these compounds and their likely impact on the environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-9-1947
1993-09-01
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/9/mic-139-9-1947.html?itemId=/content/journal/micro/10.1099/00221287-139-9-1947&mimeType=html&fmt=ahah

References

  1. Ahmed A.E., Anders M.W. 1978; Metabolism of dihalomethanes to formaldehyde and inorganic halide. II. Studies on the reaction mechanism.. Biochemical Pharmacology 27:2021–2025
    [Google Scholar]
  2. Bergengren E. 1960 Alfred Nobel the Man and his Work. London: Thomas Nelson & Sons.;
    [Google Scholar]
  3. Boyer P.D. 1971; Phosphatases.. In The Enzymes, 3rd edn. 4 Hydrolysis, chapters 17-21, 23, 24. New York:: Academic Press.;
    [Google Scholar]
  4. Brodman B.W., Devin M. P. 1981; Microbial attack of nitrocellulose.. Journal of Appfied Polymer Science 26:997–1000
    [Google Scholar]
  5. Carter J.H., Goldman P. 1976; Pentaerythritol tetranittate metabolism: a non-essential role for the flora.. Biachmical Pharmacology 25:860–862
    [Google Scholar]
  6. Crescenzi A.M.V., Dodgson K.S., White G.F. 1984; Purification and some properties of the D-lactate-2-sulphatase of Pseudomonas s vringae. GG.. Biochemical Journal 223:487–494
    [Google Scholar]
  7. Davidson I. W. F., Miller H. S., Dicarlo F. J. 1971; Pharmacodynamics and biotransformation of pentaerythritol tetra-nitrate in man.. Journal of Pharmaceutical Science 60:274–277
    [Google Scholar]
  8. Dicarlo F. J., Crew M.C., Continho C.B., Haynes L.J., Sklow N.J. 1967; The absorption and biotransformation of pentaerythritol tetratitrate-l,2-14C in the rat.. Biochemical Pharmacology 16:309–316
    [Google Scholar]
  9. Dillio C., Aceto A., Piccolomini R., Allocati N., Faraone A., Cellini L., Raragnan G., Federici G. 1988; Purification and characterization of three forms of glutathione S-transferase from Proteus mirabilis.. Biochemical Journal 255:971–975
    [Google Scholar]
  10. Dodgson K.S., Rose F. 1975; Sulfohydrolases.. In Metabolism of Sulfur Compounds pp. 359–431 Greenberg D. M. Edited by New York: Academic Press;
    [Google Scholar]
  11. Dodgson K.S., White G.F. 1983; Some microbial enzymes involved in the biodegradation of sulphated surfactants.. Topics in Enzyme and Fermentation Biotechnology 7:90–155
    [Google Scholar]
  12. Dodgson K.S., White G.F., Fitzgerald J.W. 1982 Sulfatases of microbial origin. Boca Raton: CRC Press.;
    [Google Scholar]
  13. Ducrocq C., Servy C., Lenfant M. 1989; Bioconversion of glyceryl trinitrate into mononitrates by Geotrichum candidum.. FEMS Microbiology Letters 65:219–222
    [Google Scholar]
  14. Ducrocq C., Servy C., Lenfant M. 1990; Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate: efficiency of the filamentous fungus Phanerochaete chrysosporium.. Biotechnology and Applied Biochemistry 12:325–330
    [Google Scholar]
  15. Engvild K.C. 1986; Chlorine-containing natural products in higher plants.. Phytochemistry 25:781–791
    [Google Scholar]
  16. Fahey R.C., Brown W.C., Adams W.B., Worsham M.B. 1978; Occurrence of glutathione in bacteria.. Journal of Bacteriology 133:1126–1129
    [Google Scholar]
  17. Fathepure B.Z., Nengu J.P., Boyd S.A. 1987; Anaerobic bacteria that dechlorinate perchloroethylene.. Applied and Environmental Microbiology 53:2671–2674
    [Google Scholar]
  18. Feelisch M., Noack E.A. 1987; Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase.. Biochemical Pharmacology 139:19–30
    [Google Scholar]
  19. Ghosh B.K., Ghosh A. 1992; Degradation of cellulose by fungal cellulase.. In Microbial Degradation of Natural Products pp. 83–126 Winkelmann G. Edited by Weinheim: VCH Publishers;
    [Google Scholar]
  20. Greathouse G.A., Wessel C.J. 1954 Deterioration of Materials. New York: Reinhold Publishing Corp;
    [Google Scholar]
  21. Habig W.H., Keen J.H., Jakoby W.B. 1975; Glutathione S- transferase in the formation of cyanide from organic thiocyanates and as an organic nitrate reductase.. Biochemical and Biophysical Research Communications 64:501–506
    [Google Scholar]
  22. Hardman D.J. 1991; Biotransformation of halogenated com¬pounds: enzymatic cleavage of carbon-halogen bonds.. Critical Reviews in Biotechnology 11:1–46
    [Google Scholar]
  23. Harper D.B., Hamilton J.T.G. 1988; Biosynthesis of chloromethane in Phellinus pomaceus.. Journal of General Micro-biology 134:2831–2839
    [Google Scholar]
  24. Hemminiki K. 1979; Fluorescence study of DNA alkylation by epoxides.. Chemical and Biological Interactions 28:269–278
    [Google Scholar]
  25. Hibbs J.B., Taintor R.R., Vavrin Z. 1987; Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite.. Science 235:473–476
    [Google Scholar]
  26. Hochstein L.I., Tomlinson G.A. 1988; The enzymes associated with denitrification.. Annual Review of Microbiology 42:231–261
    [Google Scholar]
  27. Hutcheson I.R., Whittle B.J.R., Boughton-SMITH N.K. 1990; Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat.. British Journal of Pharmacology 101:815–820
    [Google Scholar]
  28. Jakoby W.B. 1989; Reactions of glutathione transferases: a pattern for the enzymes of detoxication.. In Glutathione S-Transferases and Drug Resistance, Proceedings of 3rd GST Conference, Edinburgh pp. 87–96 Hayes J. D., Picket C. B., Mantle T. J. Edited by London: Taylor & Francis.;
    [Google Scholar]
  29. Janssen D.B., Jager D., Witholt B. 1987; Degradation of haloalkanes and a,m-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ70.. Applied and Environmental Microbiology 53:561–566
    [Google Scholar]
  30. Kaplan D.L. 1992; Biological degradation of explosives and chemical agents.. Current Opinion in Biotechnology 3:253–260
    [Google Scholar]
  31. Kaplan D.L. 1993; Biotechnology and bioremediation for organic energetic compounds.. In Organic Energetic Compounds. Marinkas T. Edited by New York: Nova Science Publishers (in the Press);
    [Google Scholar]
  32. Kaplan D.L., Cornell J.H., Kaplan A.M. 1981 Decomposition of the epoxides glycidol and glycidyl nitrate. Technical Report Natick/TR-81/018. US Army Natick Research: Development Laboratories.;
    [Google Scholar]
  33. Kaplan D.L., Cornell J.H., Kaplan A.M. 1982; Biodegradation of glycidol and glycidyl nitrate.. Applied and Environmental Microbiology 43:144–150
    [Google Scholar]
  34. Kaplan A.M., Mandels M., Pillion E., Greenberger M. 1970; Resistance of weathered cotton cellulose to cellulase action.. Applied Microbiology 20:85–93
    [Google Scholar]
  35. Kaska D.D., Yokota T., Webb H.M., Gibor A., Polne-FULLER M., Kaska W.C. 1991; Long-chain chloroalkane utilization by a marine protozoan.. Journal of General Microbiology 137:2669–2672
    [Google Scholar]
  36. Keen J.H., Jakoby W.B. 1978; Glutathione transferases: catalysis of the nucleophilic reactions of glutathione.. Journal of Biological Chemistry 253:5654–5657
    [Google Scholar]
  37. Keen J.H., Habig W.H., Jakoby W.B. 1976; Mechanisms for the several activities of the glutathione S-transferase.. Journal of Biological Chemistry 251:6183–6188
    [Google Scholar]
  38. Kilbourn R.G., Gross S.S., Jubran A., Adams J., Griffith O.W., Levi R., Lodato R.F. 1990a; NG-Methyl-L-arginine inhibits tumor necrosis factor-induced hypotension; implications for the involvement of nitric oxide.. Proceedings of the National Academy of Sciences of the United States of America 87:3629–3632
    [Google Scholar]
  39. Kilbourn R.G., Jubran A., Gross S.S., Griffith O.W., Levi R., Adams J., Lodato R.F. 1990b; Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis.. Biochemical and Biophysical Research Communications 172:1132–1138
    [Google Scholar]
  40. King S.-Y.P., Fung H.-L. 1984; Rapid microbial degradation of organic nitrates in rat excreta.. Drug Metabolism and Disposition 12:353–357
    [Google Scholar]
  41. Knowles R.G., Palacios M., Palmer R.M.J., Moncada S. 1989; Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase.. Proceedings of the National Academy of Sciences of the United States of America 86:5159–5162
    [Google Scholar]
  42. Knowles R.G., Salter M., Brooks S.L., Moncada S. 1990; Anti-inflammatory glucocorticoids inhibit the induction by endotoxin of nitric oxide synthase in the lung, liver and aorta of the rat.. Biochemical and Biophysical Research Communications 172:1042–1048
    [Google Scholar]
  43. Kohler-STAUBE D., Leisinger T. 1985; Dichloromethane dehalogenase of Hyphomicrobium strain DM22.. Journal of Bacteriology 162:676–681
    [Google Scholar]
  44. La ROCHE S.D., Leisinger T. 1990; Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family.. Journal of Bacteriology 172:164–171
    [Google Scholar]
  45. Lau E.P., Niswander L., Watson D., Fall R.R. 1980; Glutathione S-transferase is present in a variety of microorganisms.. Chemosphere 9:565–569
    [Google Scholar]
  46. Litchfield M.H. 1971; Aspects of nitrate ester metabolism.. Journal of Pharmaceutical Sciences 60:1599–1607
    [Google Scholar]
  47. Logan R.P. 1953; Acid and explosive wastes.. In Industrial Wastes, their Disposal and Treatment pp. 232–254 Rudolfs W. Edited by New York: Reinhold Publishing Corp;
    [Google Scholar]
  48. Malburg L.M., Tamblyn LEE J.M., Forsberg C.W. 1992; Degradation of cellulose and hemicellulose by rumen microorganisms. In Microbial Degradation of Natural Products pp. 127–159 Winkelmann G. Edited by Weinheim: VCH Publishers;
    [Google Scholar]
  49. Moncada S., Radomski M.W., Palmer R.M.J. 1988; Endothelium-derived relaxing factor: identification as nitric oxide and role in the control of vascular tone and platelet function.. Biochemical Pharmacology 37:2495–2501
    [Google Scholar]
  50. Murrell W. 1879; Nitro-glycerine as a remedy for angina pectoris.. Lancet 1:80–81
    [Google Scholar]
  51. Neidleman S.L., Geigert J. 1986 Biohalogenation: Principles, Basic Roles and Applications. Chichester: Ellis Horwood.;
    [Google Scholar]
  52. Neilson A.H. 1990; The biodegradation of halogenated organic compounds.. Journal of Applied Bacteriology 69:445–470
    [Google Scholar]
  53. Palacios M., Knowles R.G., Palmer R.M.J., Moncada S. 1989; Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands.. Biochemical and Biophysical Research Communications 165:802–809
    [Google Scholar]
  54. Palmer R.M.J., Ashton D.S., Moncada S. 1988; Vascular endothelial cells synthesize nitric oxide from L-arginine.. Nature; London: 333664–666
    [Google Scholar]
  55. Payne W.J. 1981 Denitrification. New York: Wiley;
    [Google Scholar]
  56. Radomski M.W., Palmer R.M.J., Moncada S. 1990; An L- arginine/nitric oxide pathway present in human platelets regulates aggregation.. Proceedings of the National Academy of Sciences of the United States of America 87:5193–5197
    [Google Scholar]
  57. Ropenga J.S., Lenfant M. 1987; Bioconversion of isosorbide dinitrate into isosorbide mononitrate by the protozoan Tetrahymena thermophila: relationship to glutathione transferase levels.. Applied Microbiology and Biotechnology 26:117–119
    [Google Scholar]
  58. Ropenga J.S., Lenfant M. 1988; Bioconversion of isosorbide dinitrate by various microorganisms.. Applied Microbiology and Biotechnology 27:358–361
    [Google Scholar]
  59. Ropenga J.S., Yax P., Lenfant M. 1989; Isosorbide dinitrate bioconversion by Beauveria strains: implication of glutathione transferase levels.. Applied Microbiology and Biotechnology 31:176–178
    [Google Scholar]
  60. Sallis P.J., Armfield S.J., Bull A.T., Hardman D.J. 1990; Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2.. Journal of General Microbiology 136:115–129
    [Google Scholar]
  61. Schror K., Woditsch I., Forster S. 1991; Generation of nitric oxide from organic nitrovasodilators during passage through the coronary vascular bed and its role in coronary vasodilation and nitrate tolerance.. Blood Vessels 28:62–66
    [Google Scholar]
  62. Selby K. 1968; Mechanism of biodegradation of cellulose.. In Biodeterioration of Materials pp. 62–78 Walters A. H., Elphich J. J. Edited by New York: Elsevier;
    [Google Scholar]
  63. Servent D., Ducrocq C., Henry Y., Guissani A., Lenfant M. 1991; Nitroglycerin metabolism by Phanerochaete chrysosporiunv.evidence for nitric oxide and nitrite formation.. Biochimica et Biophysica Acta 1074:320–325
    [Google Scholar]
  64. Servent D., Ducrocq C., Henry Y., Servy C., Lenfant M. 1992; Multiple enzymatic pathways in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. . Biotechnology and Applied Biochemistry 15:257–266
    [Google Scholar]
  65. Siu R.G.H. 1951 Microbial Decomposition of Cellulose with Special Reference to Cotton Textiles. New York:: Reinhold Publishing Corp;
    [Google Scholar]
  66. Sobrero M. 1847; Sur la mannite nitrique.. Comptes Rendues de F Academic des Sciences 25:121–123
    [Google Scholar]
  67. Sobrero A. 1848; Einwirkung der Mischung von Schwefelsure und Saltpetersaure auf einige organische Substanzen.. Annalen der Chemie 64:396–398
    [Google Scholar]
  68. Strunz G.M. 1984; Microbial chlorine-containing metabolites.. In CRC Handbook of Microbiology pp. 749–773 Laskin A. I., Lechavalicr H. A. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  69. Stucki G., Galli R., Ebershold H.R., Leisinger T. 1981; Dehalogenation of dichloromethane by cell extracts of Hypho- microbium DM22. Archives of Microbiology 130:366–371
    [Google Scholar]
  70. Tan-WALKER R.L.B. 1987 Techniques for analysis of explosive vapours. PhD thesis University of London, UK.:
    [Google Scholar]
  71. Taylor L.W., Loannides C., Parke D.V. 1989; Organic nitrate reductase: reassessment of its subcellular localization and tissue distribution and its relationship to the glutathione transferases.. International Journal of Biochemistry 21:67–71
    [Google Scholar]
  72. Taylor T., Taylor I.W., Chasseaud L.F., Bonn R. 1987; Pharmacokinetics and metabolism of organic nitrate vasodilators.. In Progress in Drug Metabolism pp. 207–336 Bridges J. W., Chasseaud L. F., Gibson G. G. Edited by London: Taylor & Francis;
    [Google Scholar]
  73. US ARMY NATICK RESEARCH AND DEVELOPMENT COMMAND NATICK 1973 Twenty-second conference on microbiological deterioration of military material. Technical Report 75-2-FSL. Food Sciences Laboratory, US Army Natick Research and Development Command; Natick, Mass:
    [Google Scholar]
  74. US ARMY NATICK RESEARCH AND DEVELOPMENT COMMAND NATRICK 1974 Twenty-third conference on microbiological deterioration of military material. Technical Report 75-87-FSL. Food Sciences Laboratory, US Army Natick Research and Development Command; Natick, Mass.:
    [Google Scholar]
  75. US ARMY NATICKR ESEARCH AND DEVELOPMENT COMMAND NATICK 1975 Twenty-fourth conference on microbiological deterioration of military material. Technical Report 76-63-FSL. Food Sciences Laboratory, US Army Natick Research and Development Command; Natick, Mass.:
    [Google Scholar]
  76. Urbanski T. 1965 Chemistry and Technology of Explosives. Warsaw & Oxford: PWN-Polish Scientific Publishers and Pergamon Press;
    [Google Scholar]
  77. Vogel T.M., Mccarty P.L. 1985; Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride and carbon dioxide under methanogenic conditions.. Applied and Environmental Microbiology 49:1080–1083
    [Google Scholar]
  78. Wade M.J., Moyer J.W., Hine C.H. 1979; Mutagenic action of a series of epoxides.. Mutation Research 66:367–371
    [Google Scholar]
  79. Walker J.E., Kaplan D.L. 1992; Biological degradation of explosives and chemical agents.. Biodegradation 3:369–385
    [Google Scholar]
  80. Weightman A.J., Weightman A.L., Slater J.H. 1982; Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3; evidence for two different dehalogenation mechanisms.. Journal of General Microbiology 128:1755–1762
    [Google Scholar]
  81. Wendt T.M., Kaplan A.M. 1976; A chemical-biological treatment process for cellulose nitrate disposal.. Journal of the Water Pollution Control Federation 48:660–668
    [Google Scholar]
  82. Wendt T.M., Cornell J.H. 1978; Microbial degradation of glycerol nitrates.. Applied and Environmental Micro-biology 36:693–699
    [Google Scholar]
  83. Williams R.T., Ziegenfuss P.S., Sisk W.E. 1992; Composting of explosives and propellant contaminated soils under thermophilic and mesophihc conditions.. Journal of Industrial Microbiology 9:137–144
    [Google Scholar]
  84. Yokota T., Fuse H., Omori T. 1986; Microbial dehalogenation of haloalkanes mediated by oxygenase or halido-hydrolase.. Agricultural and Biological Chemistry 50:453–460
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-9-1947
Loading
/content/journal/micro/10.1099/00221287-139-9-1947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error