1887

Abstract

Summary: A B-cell epitope, AEFPLDIT, was located to the variable sequent 3 of the major outer-membrane protein (MOMP) using the monoclonal antibody L3-1, raised to the serovar L3 MOMP. By Western blot and inclusion immunofluorescence assay the monoclonal antibody recognized all the C complex and C-related complex serovars of except serovar C. Dot-blot and ELISA data using native elementary bodies indicated that the epitope was surface exposed. The monoclonal antibody, at concentrations of 10 and 100 μg per 10 chlamydial inclusion-forming units, was able to neutralize the infectivity of chlamydia in an assay but did not neutralize chlamydia or in a mouse toxicity assay. A peptide corresponding to the variable sequent 3 has previously been shown to also elicit a T-cell response; thus, careful consideration should be given to inclusion of this region of the major outer-membrane protein in a subunit vaccine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-139-7-1565
1993-07-01
2021-05-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/139/7/mic-139-7-1565.html?itemId=/content/journal/micro/10.1099/00221287-139-7-1565&mimeType=html&fmt=ahah

References

  1. Allen J., Locksley R. M., Stephens R. S. 1991; A single peptide from the major outer membrane protein of Chlamydia trachomatis elicits T cell help for the production of antibodies to protective determinants.. Journal of Immunology 147:674–679
    [Google Scholar]
  2. Baehr W., Zhang Y. -W., Joseph T., Su H., Nano F. E., Everett K. D. E., Caldwell H. D. 1988; Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes.. Proceedings of the National Academy of Sciences of the United States of America 854000–4004
    [Google Scholar]
  3. Bavoil P., Ohlin A., Schachter J. 1984; Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. . Infection and Immunity 44:479–485
    [Google Scholar]
  4. Carlson E. J., Peterson E. M., De LA MAZA L. M. 1989; Cloning and characterization of a Chlamydia trachomatis L3 DNA fragment that codes for an antigenic region of the major outer membrane protein and specifically hybridizes to the C and C-related complex serovars.. Infection and Immunity 57:487–494
    [Google Scholar]
  5. Cheng X., Pal S., De La Maza L. M., Peterson E. M. 1992; Characterization of the humoral response induced by a peptide corresponding to variable domain IV of the major outer membrane protein of Chlamydia trachomatis serovar E.. Infection and Immunity 60:3428–3432
    [Google Scholar]
  6. Conlan J. W., Clarke I. N., Ward M. E. 1988; Epitope mapping with solid-phase peptides: identification of type-, subspecies-, species-, and genus-reactive antibody binding domains on the major outer membrane protein of Chlamydia trachomatis. . Molecular Microbiology 2:673–679
    [Google Scholar]
  7. Conlan J. W., Ferris S., Clarke I. N., Ward M. E. 1989; Surface-exposed epitopes on the major outer membrane protein of Chlamydia trachomatis defined with peptide antisera.. Journal of General Microbiology 135:3219–3228
    [Google Scholar]
  8. Das P., Pal S., Pal S. C. 1984; Evaluation of the micro enzyme linked immunosorbent assay, indirect haemagglutination and indirect fluorescence antibody techniques for the serodiagnosis of amoebiasis.. Journal of Diarrhea Disease Research 2:238–242
    [Google Scholar]
  9. Fielder T. J., Peterson E. M., De LA MAZA L. M. 1991; Nucleotide sequence of DNA encoding the major outer membrane protein of Chlamydia trachomatis serovar L3.. Gene 101:159–160
    [Google Scholar]
  10. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. 1987; Strategies for epitope analysis using peptide synthesis.. Journal of Immunological Methods 102:259–274
    [Google Scholar]
  11. Isaacs J. D., Clarke M. R., Greenwood J., Waldmann H. 1992; Therapy with monoclonal antibodies. An in vivo model for the assessment of therapeutic potential.. Journal of Immunology 148:3062–3071
    [Google Scholar]
  12. Ishizaki M., Allen J. E., Beatty P. R., Stephens R. S. 1992; Immune specificity of murine T-cell lines to the major outer membrane protein of Chlamydia trachomatis. . Infection and Immunity 60:3714–3718
    [Google Scholar]
  13. Newhall W. J., Basinski M. B., Lee C. -H. 1990; Mapping of major outer membrane protein epitopes of Chlamydia trachomatis serovar D.. In Chlamydial Infections pp. 85–88 Edited by Bowie W. R., Caldwell H. D., Jones R. P., Mardh P. A., Ridgway G. L., Schachter J., Stamm W. E., Ward M. E. Cambridge: Microbiology Society;
    [Google Scholar]
  14. Peterson E. M., Zhong G., Carlson E., De LA MAZA L. M. 1988; Protective role of magnesium in the neutralization by antibodies of Chlamydia trachomatis infectivity.. Infection and Immunity 56:885–891
    [Google Scholar]
  15. Peterson E. M., Cheng X., Markoff B. A., Fielder T. J., De LA MAZA L. M. 1991; Functional and structural mapping of the Chlamydia trachomatis species-specific major outer membrane protein epitopes by use of neutralizing monoclonal antibodies.. Infection and Immunity 59:4147–4153
    [Google Scholar]
  16. Stephens R. S., Sanchez-PESCADOR R., Wagar E. A., Inouye C., Urdea M. S. 1987; Diversity of Chlamydia trachomatis major outer membrane protein genes.. Journal of Bacteriology 169:3879–3885
    [Google Scholar]
  17. Su H., Zhang Y. -X., Barrera O., Watkins N. G., Caldwell H. D. 1988; Different effect of trypsin on infectivity of Chlamydia trachomatis: loss of infectivity requires cleavage of major outer membrane protein variable domains II and IV.. Infection and Immunity 56:2094–2100
    [Google Scholar]
  18. Su H., Morrison R. P., Watkins N. G. 1990; Identification and characterization of T helper cell epitopes of the major outer membrane protein of Chlamydia trachomatis. . Journal of Experimental Medicine 172:203–212
    [Google Scholar]
  19. Taylor-ROBINSON D., Ward M. E. 1989; Immunity to chlamydial infections and the outlook for vaccination.. In Vaccines for Sexually Transmitted Diseases pp. 67–85 Edited by Meheus A., Spier R. S. London: Butterworths;
    [Google Scholar]
  20. Wang S.-P., Grayston J. D. 1984; Micro-immunofluorescence serology of Chlamydia trachomatis. . In Medical Virology III pp. 87–118 Edited by De la Maza L. M., Peterson E. M. New York: Elsevier;
    [Google Scholar]
  21. Yuan Y., Zhang Y. -X., Watkins N. G., Caldwell H. D. 1989; Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars.. Infection and Immunity 57:1040–1049
    [Google Scholar]
  22. Zhang Y.-X., Stewart S., Joseph T., Taylor H. R., Caldwell H. D. 1987; Protective monoclonal antibodies recognise epitopes located on the major outer membrane protein of Chlamydia trachomatis. . Journal of Immunology 138:575–581
    [Google Scholar]
  23. Zhong G., Peterson E. M., Czarniecki C. W., De LA MAZA L. M. 1988; Recombinant murine gamma interferon inhibits Chlamydia trachomatis serovar LI in vivo. . Infection and Immunity 56:283–286
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-139-7-1565
Loading
/content/journal/micro/10.1099/00221287-139-7-1565
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error