1887

Abstract

Highly purified lectins with specificities for receptor molecules containing sialic acid, -acetylglucosamine (-GlcNAc), -acetylgalactosamine (-GalNAc), galactose (-Gal), mannose-like residues (-Man) or -fucose (-Fuc), were used to determine changes in cell-surface carbohydrates of the protozoal parasite during metacyclogenesis under chemically defined conditions. Of the -GalNAc-binding lectins, BS-I selectively agglutinated metacyclic trypomastigotes, MPL was selective for replicating epimastigotes, whereas SBA strongly agglutinated all developmental stages of . . WGA (sialic acid and/or -GlcNAc specific) was also reactive with differentiating epimastigotes and metacyclic trypomastigotes but displayed a higher reactivity with replicating epimastigote forms. A progressive decrease in agglutinating activity was observed for jacaline (specific for D-Gal) during the metacyclogenesis process; conversely, a progressive increase in affinity was observed for RCA-I (-Gal-specific), although the reactivity of other -Gal-specific lectins (PNA and AxP) was strong at all developmental stages. All developmental stages of . were agglutinated by Con A and lectins (specific for -Man-like residues); however, they were unreactive with the -fucose-binding lectins from and . These agglutination assays were further confirmed by binding studies using I-labelled lectins. Neuraminidase activity was detected in supernatants of cell-free differentiation medium using the PNA hemagglutination test with human A erythrocytes. The most pronounced differences in lectin agglutination activity were observed between replicating and differentiating epimastigotes, suggesting that changes in the composition of accessible cell-surface carbohydrates precede the morphological transformation of epimastigotes into metacyclic trypomastigotes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-137-12-2845
1991-12-01
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/137/12/mic-137-12-2845.html?itemId=/content/journal/micro/10.1099/00221287-137-12-2845&mimeType=html&fmt=ahah

References

  1. Aymerich S., Goldenberg S. 1989; The karyotype of Trypanosoma cruzi Dm 28c: comparison with other T. cruzi strains and trypanosomatids. Experimental Parasitology 69:107–115
    [Google Scholar]
  2. Bonaldo M. C, Souto-Padron T., De Souza W., Goldenberg S. 1988; Cell-substrate adhesion during Trypanosoma cruzi differentiation. Journal of Cell Biology 106:1349–1358
    [Google Scholar]
  3. Brener Z. 1973; Biology of Trypanosoma cruzi . Annual Review of Microbiology 27:347–383
    [Google Scholar]
  4. Camargo E. P. 1964; Growth and differentiation of Trypanosoma cruzi. I. Origin of metacyclic trypomastigotes in liquid media. Revista do Institute de Medicina Tropical de Sao Paulo 6:93–100
    [Google Scholar]
  5. Contreras V. T., Salles J. M., Thomas N., Morel C. M., Goldenberg S. 1985; In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Molecular and Biochemical Parasitology 16:315–327
    [Google Scholar]
  6. Contreras V. T., Araujo-Jorge T. C, Bonaldo M. C, Thomas N., Barbosa H. S., Meirelles M. N. L., Goldenberg S. 1988; Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Memorias do Institute Oswaldo Cruz 83:123–133
    [Google Scholar]
  7. Dvorak J. A., Hall T. E., Crane M. S. J., Engel J. C, McDaniel J. P., Uriegas R. 1980; Trypanosoma cruzi; flow cytometric analysis. I. Analysis of total DNA per organism by means of mithramycin-induced fluorescence. Journal of Protozoology 29:430–437
    [Google Scholar]
  8. Engel J. C, Dvorak J. E., Segura E. L., Crane M. S. J. 1982; Trypanosoma cruzi: biological characterization of 19 clones derived from two chronic chagasic patients. I. Growth kinetics in liquid medium. Journal of Protozoology 29:555–560 Esteves M. G., Andrade A. F. B., Angluster J., de Souza W., Mundim M. H., Roitman I., Pereira M. E. A. 1982; Cell surface carbohydrates in Crithidia deanei: influence of the endosym-biont. European Journal of Cell Biology 26:244–248
    [Google Scholar]
  9. Esteves M. G., Andrade A. F. B., Alviano C. S., Roitman I., de Souza W., Angluster J. 1987; Cell surface carbohydrate differences in wild and mutant strains of Crithidia fasciculata . Journal of Protozoology 34:226–230
    [Google Scholar]
  10. Esteves M. G., Attias M., Silva-Filho F. C, Pereira M. E. A., Alviano C, Angluster J., de Souza W. 1988; The cell surface of Phytomonas davidi . Cytobiosis 54:71–84
    [Google Scholar]
  11. Esteves M. G., Gonzales-Perdomo M., Alviano C. S., Angluster J., Goldenberg S. 1989; Changes in fatty-acid composition associated with differentiation of Trypanosoma cruzi . FEMS Microbiology Letters 59:31–34
    [Google Scholar]
  12. Libby P., Alroy J., Pereira M. E. A. 1986; A neuraminidase from Trypanosoma cruzi removes sialic acid from the surface of mammalian myocardial and endothelial cells. Journal of Clinical Investigation 77:127–135
    [Google Scholar]
  13. Morel C. M., Chiari E., Camargo E. P., Mattel D. M., Romanha A. J., Simpson L. 1980; Strains and clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease products of kinetoplast DNA minicircles. Proceedings of the National Academy of Sciences of the United States of America 776810–6814
    [Google Scholar]
  14. Nicolson G. L. 1974; The interaction of lectins with animal cell surfaces. International Review of Cytology 39:89–190 Pereira M. E. A. 1983a; A rapid and sensitive assay for neuraminidase using peanut lectin hemagglutination: Application to Vibrio cholerae and Trypanosoma cruzi . Journal of Immunological Methods 63:25–34
    [Google Scholar]
  15. Pereira M. E. A. 1983a; A developmentally regulated neuraminidase activity in Trypanosoma cruzi . Science 219:1444–1446
    [Google Scholar]
  16. Pereira M. E. A., Loures M. A., Villalta F., Andrade A. F. B. 1980; Lectin receptors as markers for Trypanosoma cruzi developmental stages and a study of the interaction of wheat germ agglutinin with sialic acid residues on epimastigote cells. Journal of Experimental Medicine 152:1375–1392
    [Google Scholar]
  17. Pereira M. E. A., Andrade A. F. B., Ribeiro J. M. C. 1981; Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi . Sciences 211:597–600
    [Google Scholar]
  18. Saraiva E. M. B., Andrade A. F. B., Pereira M. E. A. 1986; Cell surface carbohydrate of Leishmania mexicana amazonensis: differences between infective and non-infective forms. European Journal of Cell Biology 40:219–225
    [Google Scholar]
  19. Schottelius J., Uhlenbruck G. 1983; Comparative studies of Trypanosoma cruzi and T cruzi like stocks from different South American countries using lectins. Zeitschrift jur Parasitenkunde 69:727–736
    [Google Scholar]
  20. Steck T. L., Wallach D. F. H. 1965; The binding of kidney-bean phytohemagglutinin by Ehrlich ascites carcinoma. Biochimica et Biophysica Ada 97:510–522
    [Google Scholar]
  21. Stevens A. F., Miles M. A., Allen A. K. 1988; Trypanosoma cruzi: studies on the interactions of lectins with glycoconjugates of different zymodemes. Experimental Parasitology 67:324–333
    [Google Scholar]
  22. Tibayrenc M., Ward P., Moya A., Ayalla F. J. 1986; Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. Proceedings of the National Academy of Sciences of the United States of America 83115–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-137-12-2845
Loading
/content/journal/micro/10.1099/00221287-137-12-2845
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error