1887

Abstract

A gene for alkaline cellulase from the alkalophilic sp. KSM-635 was cloned into the dIII site of pBR322 and expressed in HB101. Although the recombinant plasmid contained two dIII inserts of 2·6 kb and 4·0 kb, the inserts were found to be contiguous in the genome by hybridization analysis. Nucleotide sequences of a 2·4 kb region which was indispensable for the production of cellulase, and the flanking, 1·1 kb region, were determined. There was an open reading frame (ORF) of 2823 bp in the 3498 bp sequence determined, which encoded 941 amino acid residues. Two putative ribosome-binding sites and a -type, promoter-like sequence were found upstream from an initiation codon in the ORF. The deduced amino-terminal sequence resembles the signal peptide of extracellular proteins. A region of amino acids, 249 to 568, of the deduced amino acid sequence of the cellulase from this organism is homologous with those of alkaline and neutral enzymes of other micro-organisms, but nine amino acid residues were found to be conserved only in the alkaline enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-7-1327
1990-07-01
2024-05-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/7/mic-136-7-1327.html?itemId=/content/journal/micro/10.1099/00221287-136-7-1327&mimeType=html&fmt=ahah

References

  1. Adhya S., Gottesman M. 1978; Control of transcription termination. Annual Review of Biochemistry 47:967–996
    [Google Scholar]
  2. Ait N., Creuzet N., Forget P. 1979; Partial purification of cellulase from Clostridium thermocellum./. Journal of General Microbiology 113:399–402
    [Google Scholar]
  3. Birnboim H.C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Brosius J. 1984; Plasmid vectors of the selection of promoters. Gene 27:151–160
    [Google Scholar]
  5. Fukumori F., Kudo T., Horikoshi K. 1985; Purification and properties of a cellulase from alkalophilic Bacillus sp. no. 1139. Journal of General Microbiology 131:3339–3345
    [Google Scholar]
  6. Fukumori F., Kudo T., Narahashi Y., Horikoshi K. 1986a; Molecular cloning and nucleotide sequence of the alkaline cellulase gene from the alkalophilicBacillus sp. strain 1139. Journal of General Microbiology 132:2329–2335
    [Google Scholar]
  7. Fukumori F., Sashihara N., Kudo T., Horikoshi K. 1986b; Nucleotide sequences of two cellulase genes from alkalophilicBacillus sp. strain N-4 and their strong homology. Journal of Bacteriology 168:479–485
    [Google Scholar]
  8. Gold L., Pribnow D., Schneider T., Shinedling S., Singer B.S., Stormo G. 1981; Translational initiation in prokaryotes. Annual Review of Microbiology 35:365–403
    [Google Scholar]
  9. Hager P.J., Rabinowitz J.C. 1985; Translational specificity in Bacillus subtilis. In The Molecular Biology of the Bacilli II pp 1–32 Dubnau D. A. Edited by Orlando: Academic Press;
    [Google Scholar]
  10. Horikoshi K., Fukumori F. 1988; Modification and expression of alkaline cellulase genes of alkalophilicBacillus strains. In Biochemistry and Genetics of Cellulose Degradation, pp 203–217 Aubert J.-P., Beguin P., Millet J. Edited by Orlando: Academic Press;
    [Google Scholar]
  11. Horikoshi K., Nakao M., Kurono Y., Sashihara N. 1984; Cellulases of an alkalophilicBacillus strain isolated from soil. Canadian Journal of Microbiology 30:774–779
    [Google Scholar]
  12. Hwang J.-Y., Doi R.H. 1980; Transcription-termination factor rho from Bacillus subtilis. . European Journal of Biochemistry10 4:313–320
    [Google Scholar]
  13. Ito S., Shikata S., Ozaki K., Kawai S., Okamoto K., Inoue S., Takei A., Ohta Y., Satoh T. 1989; Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agricultural and Biological Chemistry 53:127–51281
    [Google Scholar]
  14. Kawai S., Okoshi H., Ozaki K., Shikata S., Ara K., Ito S. 1988; Neutrophilic Bacillus strain, KSM-522, that produces an alkaline carboxymethylcellulase. Agricultural and Biological Chemistry 52:1425–1431
    [Google Scholar]
  15. Langsford M.L., Gilkes N.R., Wakarchuk W.W., Kilburn D.G., Miller R.C. Jr Warren R.A.J. 1984; The cellulase system of Cellulomonasfimi. . Journal of General Microbiology 130:1367–1376
    [Google Scholar]
  16. Mackay R.M., Lo A., Willick G., Zuker M., Baird S., Dove M., Moranelli F., Seligy V. 1986; Structure of a Bacillus subtilisendo-β-l ,4-glucanase gene. Nucleic Acids Research 14:9915–9170
    [Google Scholar]
  17. Mandels M., Higa A. 1970; Calcium-dependent bacteriophage DNA infection. Journal of Molecular Biology 53:159–162
    [Google Scholar]
  18. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–78
    [Google Scholar]
  19. Mezes P.S.F., Lampen J.O. 1985; Secretion of proteins by bacilli. In The Molecular Biology of the Bacilli II pp 151–183 Dubnau D. A. Edited by Orlando: Academic Press;
    [Google Scholar]
  20. Miller J.H. 1972 Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Moran C.P. Jr Lang N., Legrice S.F.J., Lee G., Stephens M., Sonenshein A.L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. . Molecular and General Genetics 186:339–346
    [Google Scholar]
  22. Murphy N., Mcconnell D.J., Cantwell B.A. 1984; The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme β-glucanase. Nucleic Acids Research 12:5355–5367
    [Google Scholar]
  23. Nakamura A., Uozumi T., Beppu T. 1987; Nucleotide sequence of a cellulase gene of Bacillus subtilis. . European Journal of Biochemistry 164:317–320
    [Google Scholar]
  24. Perlman D., Halvorson H.O. 1983; A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. Journal of Molecular Biology 167:391–409
    [Google Scholar]
  25. Priest F. 1977; Extracellular enzyme synthesis in the genus Bacillus. . Bacteriological Reviews 41:711–753
    [Google Scholar]
  26. Rigby P.W., Dieckmann M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  27. Robson L.M., Chambliss G.H. 1987; Endo-β-l ,4-glucanase gene of Bacillus subtilis DLG. Journal of Bacteriology 169:2017–2025
    [Google Scholar]
  28. Ryu D.D.Y., Mandels M. 1980; Cellulases: biosynthesis and applications. Enzynie and Microbial Technology 2:91–102
    [Google Scholar]
  29. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochimica et BiophysicaActa 72:619–629
    [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74:5463–5467
    [Google Scholar]
  31. Schellhorn H.E., Forsberg C.W. 1984; Multiplicity of extracellular β-(l ,4)-endoglucanases of Bacteroidessuccinogenes S85. Canadian Journal of Microbiology 30:930–937
    [Google Scholar]
  32. Seo Y.S., Lee Y.H., Pek U.H., Kang H.S. 1986; Analysis on the nucleotide sequence of the signal region of Bacillus subtilisextracellular cellulase gene. Korean Journal of Microbiology 24:236–242
    [Google Scholar]
  33. Teather R.M., Wood P.J. 1982; Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology 43:777–780
    [Google Scholar]
  34. Tinoco I. Jr Borer P.N., Dengler B., Levine M.D., Uhlenbeck O.C., Crothers D.M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41
    [Google Scholar]
  35. Yoshikawa T., Suzuki H., Nisizawa K. 1974; Biogenesis of multiple cellulase components of Pseudomonas fluorescens var. cellulosa. I. Effects of culture conditions on the multiplicity of cellulase. Journal of Biochemistry 75:531–540
    [Google Scholar]
  36. Wood T.M., Wilson C.A., Stewart C.S. 1982; Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcusalbusand its release from the bacterial cell wall. Biochemical Journal 205:129–137
    [Google Scholar]
  37. Zappe H., Jones W.A., Jones D.T., Woods D.R. 1988; Structure of an endo-β-1,4-glucanase gene from Clostridium acetobu-tylicum P262 showing homology with endoglucanase genes from Bacillus spp. Applied and Environmental Microbiology 54:1289–1292
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-7-1327
Loading
/content/journal/micro/10.1099/00221287-136-7-1327
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error