1887

Abstract

The ability of and to utilize iron complexes, iron-proteins and exogenous microbial siderophores was evaluated. In a plate bioassay, all three species used not only ferric nitrate but also the iron chelates ferric citrate, ferric nitrilotriacetate and ferric 2,3-dihydroxybenzoate. Each species examined also used haemin, haemoglobin and haem-albumin as iron sources although only could acquire iron from transferrin or from haemoglobin complexed with haptoglobin. None of the haemophili obtained iron from ferritin or lactoferrin or from the microbial siderophores aerobactin or desferrioxamine B. However, the phenolate siderophore enterobactin supplied iron to both and , and DNA isolated from both organisms hybridized with a DNA probe prepared from the ferric enterobactin receptor gene In addition, a monospecific polyclonal antiserum raised against the 81 kDa ferric enterobactin receptor (FepA) recognized an iron-repressible outer membrane protein (OMP) in of between 80 and 82 kDa (depending on the strain). This anti-FepA serum did not cross-react with any of the OMPs of or . The OMPs of each species were also probed with antisera raised against the 74 kDa Cir or 74 kDa IutA (aerobactin receptor) proteins of Apart from one strain (NCTC 10665), in which an OMP of about 80 kDa cross-reacted with the anti-IutA sera, no cross-reactivity was observed between Cir, IutA and the OMPs of or . Thus, and possess a functional enterobactin iron-uptake system, and both siderophore-dependent and siderophore-independent high-affinity iron-sequestering systems are now known to be expressed in the genus .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-136-12-2343
1990-12-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/136/12/mic-136-12-2343.html?itemId=/content/journal/micro/10.1099/00221287-136-12-2343&mimeType=html&fmt=ahah

References

  1. Albritton W. L. 1982; Infections due to Haemophilus species other than H. influenzae . Annual Review of Microbiology 11:199–216
    [Google Scholar]
  2. Armstrong S. K., Pettis G. S., Forrester L. J., Mcintosh M. A. 1989; The Escherichia coli enterobactin biosynthesis gene, entD : nucleotide sequence and membrane localization of its protein product. Molecular Microbiology 3:757–766
    [Google Scholar]
  3. Bezkorovainy A. 1987; Iron proteins. In Iron and Infection; Molecular, Physiological and Clinical Aspects pp. 69–137 Bullen J. J., Griffiths E. Edited by Chichester: Wiley;
    [Google Scholar]
  4. Black C. T., Kupferschmid J. P., West K. W., Grosfeld J. L. 1988; Haemophilus parainfluenzae infections in children, with a report of a unique case. Reviews of Infectious Diseases 10:342–346
    [Google Scholar]
  5. Bullen J. J., Gripfiths E. 1987 Iron and Infection, Molecular, Physiological and Clinical Aspects Chichester : Wiley;
    [Google Scholar]
  6. Carter G. I., Towner K. J., Slack R. C. B. 1987a; Rapid detection of a specific trimethoprim resistance gene using a biotinylated DNA probe. Journal of Antimicrobial Chemotherapy 20:335–341
    [Google Scholar]
  7. Carter G. I., Towner K. J., Slack R. C. B. 1987b; Detection of TEM beta-lactamase genes by non-isotopic spot hybridisation. European Journal of Clinical Microbiology 6:406–409
    [Google Scholar]
  8. Chart H., Griffiths E. 1985; Antigenic and molecular homology of the ferric enterobactin receptor protein of Escherichia coli . Journal of General Microbiology 131:1503–1509
    [Google Scholar]
  9. Coulton J. W., Pang J. C. S. 1983; Transport of hemin by Haemophilus influenzae type b. Current Microbiology 9:93–98
    [Google Scholar]
  10. Crosa J. H. 1989; Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiological Reviews 53:517–530
    [Google Scholar]
  11. Eaton J. W., Brandt P., Mahoney J. R., Lee J. T. 1982; Haptoglobin: a natural bacteriostat. Science 215:691–693
    [Google Scholar]
  12. Farley M. M., Stephens D. S., Mulks M. H., Cooper M. D., Bricker J. V., Mira S. S., Wright A. 1986; Pathogenesis of IgAl protease-producing and -nonproducing Haemophilus influenzae in human nasopharyngeal organ cultures. Journal of Infectious Diseases 154:752–759
    [Google Scholar]
  13. Fleming T. P., Nahlik M. S., Neilands J. B., Mcintosh M. A. 1985; Physical and genetic characterization of cloned enterobactin genomic sequences from E. coli K12. Gene 34:47–54
    [Google Scholar]
  14. Ford S., Cooper R. A., Evans R. W., Hider R. C., Williams P. H. 1988; Domain preference in iron removal from human transferrin by the bacterial siderophoresaerobactin and enterobactin. European Journal of Biochemistry 178:477–481
    [Google Scholar]
  15. Griffiths E. 1987; The iron-uptake systems of pathogenic bacteria. In Iron and Infection; Molecular, Physiological and Clinical Aspects pp. 69–137 Bullen J. J., Griffiths E. Edited by Chichester: Wiley;
    [Google Scholar]
  16. Griffiths E., Stevenson P., Hale T. L., Formal S. B. 1985; Synthesis of aerobactin and a 76,000-Dalton iron-regulated outer membrane protein by Escherichia coli K-12 -Shigella flexneri hybrids and by enteroinvasive strains of Escherichia coli . Infection and Immunity 49:67–71
    [Google Scholar]
  17. Guerina N. G., Langermann S., Schoolnik G. K., Kessler T. W., Goldman D. A. 1985; Purification and characterization of Haemophilus influenzae pili, and their structural and serological relatedness to Escherichia coli P and mannose-sensitive pili. Journal of Experimental Medicine 161:145–159
    [Google Scholar]
  18. Hankte K. 1990; Dihydroxybenzoylserine - an E. coli siderophore. FEMS Microbiology Letters 67:5–8
    [Google Scholar]
  19. Herrington D. A., Sparling P. F. 1985; Haemophilus influenzae can use human transferrin as a sole source for required iron. Infection and Immunity 48:248–251
    [Google Scholar]
  20. Hoiseth S. K., Connelly C. J., Moxon E. R. 1985; Genetics of spontaneous, high frequency loss of b capsule expression in Haemophilus influenzae . Infection and Immunity 49:389–395
    [Google Scholar]
  21. Israels L. G., Yoda B., Schacter B. A. 1975; Heme binding and its possible significance in heme movement and availability in the cell. Annals of the New York Academy of Sciences 244:651–661
    [Google Scholar]
  22. Kaplan S. L., Hawkins E. P., Inzana T. J., Patrick C. C., Mason E. O. Jr 1988; Contribution of Haemophilus influenzae type b lipopolysaccharide to pathogenesis of infection. Microbial Pathogenesis 5:55–62
    [Google Scholar]
  23. Kilian M., Biberstein E. L. 1984 Haemophilus. In Bergey’s Manual of Systematic Bacteriology 1 pp. 558–569 Krieg N. R., Holt J. G. Edited by Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Maciver I., O’Reilly T., Brown M. R. W. 1990; Porphyrin ring source can alter the outer membrane protein profile of non-typable Haemophilus influenzae . Journal of Medical Microbiology 31:163–168
    [Google Scholar]
  25. Mckenna W. R., Mickelsen P. A., Sparling P. F., Dyer D. W. 1988; Iron uptake from lactoferrin and transferrin by Neisseria gonorrhoeae . Infection and Immunity 56:785–791
    [Google Scholar]
  26. Mickelsen P. A., Spakling P. F. 1981; Ability of Neisseria gonorrhoeae, Neisseria meningitidis and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infection and Immunity 33:555–564
    [Google Scholar]
  27. Morton D. J., Williams P. 1989a; Utilization of transferrin- bound iron by Haemophilus species of human and porcine origins. FEMS Microbiology Letters 65:123–128
    [Google Scholar]
  28. Morton D. J., Williams P. 1989b; Characterization of the outer- membrane proteins of Haemophilus parainfluenzae expressed under iron-sufficient and iron-restricted conditions. Journal of General Microbiology 135:445–451
    [Google Scholar]
  29. Morton D. J., Williams P. 1990; Siderophore-independent acquisition of transferrin-bound iron by Haemophilus influenzae type b. Journal of General Microbiology 136:927–933
    [Google Scholar]
  30. Moxon E. R. 1985; Antigen expression influencing tissue invasion of Haemophilus influenzae type b. In The Pathogenesis of Bacterial Infections pp. 17–29 Jackson G. G., Thomas H. Edited by Berlin: Springer-Verlag;
    [Google Scholar]
  31. Muller-Eberhard U. 1970; Hemopexin. New England Journal of Medicine 283:1090–1094
    [Google Scholar]
  32. Murphy C. K., Klebba P. E. 1989; Export of fepA :: PhoA fusion proteins to the outer membrane of Escherichia coli K12. Journal of Bacteriology 171:5894–5900
    [Google Scholar]
  33. O’Brien I. G., Gibson F. 1970; The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli . Biochimica et BiophysicaActa 215:393–402
    [Google Scholar]
  34. Payne S. M. 1988; Iron and virulence in the family Enterobacteriaceae . CRC Critical Reviews in Microbiology 16:81–111
    [Google Scholar]
  35. Pidcock K. A., Wooten J. A., Daley B. A., Stull T. L. 1988; Iron acquisition by Haemophilus influenzae . Infection and Immunity 56:721–725
    [Google Scholar]
  36. Quentin R., Musser J. M., Mellouet M., Sizaret P. -Y., Goudeau A. 1989; Typing of urogenital, maternal and neonatal isolates of Haemophilus influenzae and Haemophilus parainfluenzae in correlation with clinical source of isolation and evidence for genital specificity of H. influenzae biotype IV. Journal of Clinical Microbiology 27:2286–2294
    [Google Scholar]
  37. Rogers H. J. 1973; Iron-binding catechols and virulence in Escherichia coli . Infection and Immunity 7:445–456
    [Google Scholar]
  38. Shurin S. B., Anderson P., Zollinger J., Rathburn R. K. 1986; The pathophysiology of haemolysis in infections with Haemophilus influenzae type b. Journal of Clinical Investigation 77:1340–1348
    [Google Scholar]
  39. Stull T. L. 1987; Protein sources of heme for Haemophilus influenzae . Infection and Immunity 55:148–153
    [Google Scholar]
  40. Tsai J., Dyer D. W., Sparling P. F. 1988; Loss of transferrin receptor activity in Neisseria meningitidiscorrelates with inability to use transferrin as an iron source. Infection and Immunity 56:3132–3138
    [Google Scholar]
  41. Turk D. C. 1984; The pathogenicity of Haemophilus influenzae . Journal of Medical Microbiology 18:1–16
    [Google Scholar]
  42. West S. E. H., Sparling P. F. 1985; Response of Neisseria gonorrhoeae to iron limitation: alteration in expression of membrane proteins without apparent siderophore production. Infection and Immunity 47:388–394
    [Google Scholar]
  43. White D. C., Granick S. 1963; Hemin biosynthesis in Haemophilus . Journal of Bacteriology 85:842–850
    [Google Scholar]
  44. Williams P. 1988; Role of the cell envelope in bacterial adaptation to growth in vivo in infections. Biochimie 70:987–1011
    [Google Scholar]
  45. Williams P., Brown M. R. W. 1986; Influence of iron restriction on growth and the expression of outer membrane proteins by Haemophilus influenzae and H. parainfluenzae . FEMS Microbiology Letters 33:153–157
    [Google Scholar]
  46. Williams P., Chart H., Stevenson P., Griffiths E. 1987; Expression of high affinity iron uptake systems by clinical isolates of Klebsiella . FEMS Microbiology Letters 44:407–412
    [Google Scholar]
  47. Williams P., Smith M., Stevenson P., Griffiths E., Tomas J. M. 1989; Novel aerobactin receptor in Klebsiella pneumoniae . Journal of General Microbiology 135:3173–3181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-136-12-2343
Loading
/content/journal/micro/10.1099/00221287-136-12-2343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error