1887

Abstract

DNA from 14 species, and was characterized by CsCl-bisbenzimide density gradients in order to investigate its taxonomic potential. A few incomplete analyses were made for other species. All clearly assignable species produced three DNA bands in the gradient. along with and produced only two bands. Another possible exception, which needs further investigation, is The DNA had a relatively constant banding pattern in CsCl gradients. The small number (eight) of DNA criteria that were available were subjected to cluster analysis to assess the relationships between replicates and species. This restricted database, similar in size to the number of criteria used in morphological taxonomy, provided an independent assessment of the values that have been attached to generic and subgeneric classifications. This approach enabled assessments to be made of relationships between species that have incomplete life-histories and which therefore lack features essential for traditional taxonomic decisions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-134-10-2673
1988-10-01
2021-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/134/10/mic-134-10-2673.html?itemId=/content/journal/micro/10.1099/00221287-134-10-2673&mimeType=html&fmt=ahah

References

  1. Bahnweg G., Jahnke K. D. 1986; Assessing natural relationships in the Basidiomycetes by DNA analysis. Transactions of the British Mycological Society 87:175–191
    [Google Scholar]
  2. Bartnicki-Garcia S. 1968; Cell wall chemistry, morphogenesis and taxonomy of fungi. Annual Review of Microbiology 23:87–108
    [Google Scholar]
  3. Baxter C. F. 1983 Comparative studies of coenocytic mycelial growth in Pythium. PhD thesis, University of Reading, UK
    [Google Scholar]
  4. Butler E. J. 1907; An account of the genus Pythium and some Chytridiaceae.Memoirs of the Department of Agriculture in India. Botanical series 1:1–162
    [Google Scholar]
  5. Cavalier-Smith R. 1986; The Kingdom Chromista: origin and systematics. In Progress in Phycological Research, pp 309–344 Round F. E., Chapman D. J. Edited by Bristol: Biopress Ltd;
    [Google Scholar]
  6. Clark G., Dick M. W. 1974; Long-term storage and viability of aquatic Oomycetes. Transactions of the British Mycological Society 63:611–612
    [Google Scholar]
  7. Davidson N., Dove W. F. 1962; The thermal inactivation of transforming activity at low ionic strength. Journal of Molecular Biology 5:479–486
    [Google Scholar]
  8. Dick M. W. 1965; The maintenance of stock cultures of Saprolegniaceae. Mycologia 57:828–829
    [Google Scholar]
  9. Dick M. W. 1969; Morphology and taxonomy of the Oomycetes, with special reference to Saprolegniaceae, Leptomitaceae and Pythiaceae. I. Sexual reproduction. New Phytologist 68:751–775
    [Google Scholar]
  10. Dick M. W. 1972; Morphology and taxonomy of the Oomycetes, with special reference to Saprolegniaceae, Leptomitaceae and Pythiaceae. II. Cytogenetic systems. New Phytologist 71:1151–1159
    [Google Scholar]
  11. Dick M. W. 1987; Sexual reproduction: nuclear cycles and life-histories with particular reference to lower eukaryotes. Biological Journal of the Linnean Society 30:181–192
    [Google Scholar]
  12. Dick M. W., Wong P. T. W., Clark G. 1984; The identity of the oomycete causing ‘Kikuyu Yellows’, with a reclassification of the downy mildews. Botanical Journal of the Linnean Society 89:171–197
    [Google Scholar]
  13. Dutta S. K., Richman N., Woodward V. W., Mandel M. 1967; Relatedness among species of fungi and higher plants measured by DNA hybridization and base ratios. Genetics 57:719–727
    [Google Scholar]
  14. Felsenfeld G., Hirschman S. Z. 1965; A neighbor-interaction analysis of the hypochromism and spectra of DNA. Journal of Molecular Biology 13:407
    [Google Scholar]
  15. Fischer A. 1892; Phycomycetes. In Die Pilze Deutschlands, Oesterreichs und der Schweitz, L.Rabenhorst, Kryptogamenflora 1(4):1–490
    [Google Scholar]
  16. Garber R. C., Yoder O. C. 1983; Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal, and plasmid components. Analytical Biochemistry 135:416–422
    [Google Scholar]
  17. Green B. R., Dick M. W. 1972; DNA base composition and the taxonomy of the Oomycetes. Canadian Journal of Microbiology 18:963–968
    [Google Scholar]
  18. Grossman L. I., Hudspeth M. E. S. 1985; Fungal mitochondrial genomes. In Gene Manipulations in Fungi, pp 65–103 Bennett J. W., Lasure L. L. Edited by London: Academic Press;
    [Google Scholar]
  19. Hall R. 1969; Molecular approaches to taxonomy of fungi. Botanical Review 35:285–304
    [Google Scholar]
  20. Hirschman S. Z., Felsenfeld G. 1966; Determination of DNA composition and concentration by spectral analysis. Journal of Molecular Biology 16:347–358
    [Google Scholar]
  21. Hoyer B. H., Mccarthy B. J., Bolton E. T. 1964; A molecular approach to the systematics of higher organisms. Science 144:959–967
    [Google Scholar]
  22. Hudspeth M. E. S., Shumard D. S., Bradford C. J. R., Grossman L. I. 1983; Organization of Achlya mt-DNA: a population with two orientations and a large inverted repeat containing the rRNA genes. Proceedings of the National Academy of Sciences of the United States of America 80:142–146
    [Google Scholar]
  23. Hudspeth M. E. S., Shumard D. S., Grossman L. I. 1986; Achlya mitochondrial DNA: gene localization and analysis of inverted repeats. Molecular and General Genetics 202:16–23
    [Google Scholar]
  24. Hutter R., Demass J. 1967; Organization of tryptophan pathways, a phylogenetic study of the fungi. Journal of Bacteriology 94:1896–1907
    [Google Scholar]
  25. Johnson J. L. 1981; Genetic characterization. In Manual of Methods for General Bacteriology, pp Krieg N. R. Edited by Washington, DC: American Society for Microbiology;
    [Google Scholar]
  26. Klassen G. R., Boyd D. A., Hobman T. C., Gruenke S. A. 1984; Evolutionary stability of mitochondrial DNA organization in Achlya . Canadian Journal of Biochemistry and Cell Biology 62:571–576
    [Google Scholar]
  27. Klassen G. R., Mcnabb S. A., Dick M. W. 1987; Comparison of physical maps of ribosomal DNA repeating units in Pythium, Phytophthora and Apodachlya . Journal of General Microbiology 133:2953–2959
    [Google Scholar]
  28. Klimczak L. J., Prell H. H. 1984; Isolation and characterization of mitochondrial DNA of the oomycetous fungus Phytophthora infestans . Current Genetics 8:323–326
    [Google Scholar]
  29. Kozlowski M., Stephen P. P. 1982; Restriction enzyme analysis of mitochondrial DNA of members of the genus Aspergillus as an aid in taxonomy. Journal of General Microbiology 128:471–476
    [Google Scholar]
  30. Lambowitz A. M. 1979; Preparation and analysis of mitochondrial ribosomes. Methods in Enzymology 59:421–433
    [Google Scholar]
  31. Lejohn H. B. 1971; Enzyme regulation, lysine pathways and cell wall structures as indicators of major lines of evolution in fungi. Nature, London 231:164–168
    [Google Scholar]
  32. Lizardi P. M., Luck D. L. 1971; Absence of a 5S RNA component in the mitochondrial ribosomes of Neurospora crassa . Nature, London 229:140–142
    [Google Scholar]
  33. Lockington R. A., Taylor G. G., Winther M., Scazzochio C., Davies R. W. 1982; A physical map of the ribosomal DNA repeat unit of Aspergillus nidulans . Gene 20:135–137
    [Google Scholar]
  34. Mandel M. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods in Enzymology 12B:195–206
    [Google Scholar]
  35. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Marmur J., Falkow S., Mandel M. 1963; New approaches to bacterial taxonomy. Annual Review of Microbiology 17:329–372
    [Google Scholar]
  37. Mcnabb S. A., Boyd D. A., Belkhiri A., Dick M. W., Klassen G. R. 1987; An inverted repeat comprises more than three-quarters of the mitochondrial genome in two species of Pythium . Current Genetics 12:205–208
    [Google Scholar]
  38. Nobles M. K. 1958; Cultural characters as a guide to the taxonomy and phylogeny of the Polyporaceae. Canadian Journal of Botany 36:883–926
    [Google Scholar]
  39. Ouchi K., Saito H., Ikeda Y. 1970; Genetic relatedness of yeast strains studied by DNA-DNA hybridization method. Agricultural and Biological Chemistry 34:95–101
    [Google Scholar]
  40. Pfyffer G. E., Pfyffer R. U., Rast D. M. 1986; The polyol pattern, chemotaxonomy and phylogeny of the fungi. Sydowia 36:160–201
    [Google Scholar]
  41. Raeder U., Broda P. 1984; Comparison of the lignin-degrading white rot fungi Phanerochaete chry- sosporium and Sporotrichum pulverulentum at the DNA level. Current Genetics 8:499–506
    [Google Scholar]
  42. Russell P. J., Wagner S., Rodland K. D., Feinbaum R. L., Russell J. P., Bret-HARTE M. S., Free S. J., Metzenberg R. L. 1984; Organization of the ribosomal ribonucleic acid genes in various wild-type strains and wild-collected strains of Neurospora . Molecular and General Genetics 196:275–282
    [Google Scholar]
  43. Schröter J. 1897; Saprolegniineae. In Die Naturlichen Pflanzenfamilien ... von A. Engler und K.Prantl pp 93–105 Engler A. Edited by
    [Google Scholar]
  44. Sideris C. P. 1931; Taxonomic studies in the family Pythiaceae. I. Nematosporangium . Mycologia 23:252–295
    [Google Scholar]
  45. Sideris C. P. 1932; Taxonomic studies in the family Pythiaceae. 2. Pythium . Mycologia 24:14–61
    [Google Scholar]
  46. Sneath P. H. M., Sokal R. R. 1973 Numerical Taxonomy. San Francisco: W. H. Freeman;
    [Google Scholar]
  47. Sparrow F. K. 1931; The classification of Pythium . Science 73:41–42
    [Google Scholar]
  48. Specht C. A., Novotmy C. P., Ullrich R. C. 1984; Strain specific differences in ribosomal DNA from the fungus Schizophyllum commune . Current Genetics 8:219–222
    [Google Scholar]
  49. Storck R. 1966; Nucleotide composition of nucleic acids of fungi. Journal of Bacteriology 91:227–230
    [Google Scholar]
  50. Storck R., Alexopoulos C. J. 1970; Deoxyribonucleic acid of fungi. Bacteriological Reviews 34:126–154
    [Google Scholar]
  51. Vanderplaats-Niterink A. J. 1981 Monograph of the Genus Pythium. Baarn: Centraalbureau voor Schimmelcultures;
    [Google Scholar]
  52. Vaziri-Tehrani B., Dick M. W. 1980a; Neutral and amino sugars from the cell walls of Oomycetes. Biochemical Systematics and Ecology 8:105–108
    [Google Scholar]
  53. Vaziri-Tehrani B., Dick M. W. 1980b; Amino acid composition of oomycete cell walls. Transactions of the British Mycological Society 74:225–230
    [Google Scholar]
  54. Vaziri-Tehrani B., Dick M. W. 1980c; Taxonomic significance of variations between ratios of cell wall amino acids in fungi, with special reference to Oomycetes. Transactions of the British Mycological Society 74:231–238
    [Google Scholar]
  55. Villa V. D., Storck R. 1968; Nucleotide composition of nuclear and mitochondrial deoxy-ribosenucleic acid of fungi. Journal of Bacteriology 96:184–190
    [Google Scholar]
  56. Veerbeet M. PH., Van Heerikhuizen H., Klootiwijk J., Fontijn R. D., Planta R. J. 1984; Evolution of yeast ribosomal DNA: molecular cloning of the rDNA units of Kluyveromyces lactis and Hansenula wingei and their comparison with the rDNA units of other Saccharomycetoideae. Molecular and General Genetics 198:116–125
    [Google Scholar]
  57. Vogel H. J. 1963; Lysine pathways as ‘biochemical fossils’. Proceedings of the 5th International Congress of Biochemistry 1961 3:341–342
    [Google Scholar]
  58. Waterhouse G. M. 1967; Key to Pythium Prings- heim. Mycological Papers 109:1–15
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-134-10-2673
Loading
/content/journal/micro/10.1099/00221287-134-10-2673
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error