1887

Abstract

Studies on the tricarboxylic acid cycle of Rm5 demonstrated that, unlike other , this organism has a functionally incomplete cycle, broken at 2-oxoglutarate dehydrogenase, under photoheterotrophic conditions. This enzyme was, however, synthesized when was grown under microaerophilic chemoheterotrophic conditions. The citrate synthase exhibited responses to inhibitors characteristic of Gram-negative organisms but, unlike many microbes exhibiting an incomplete cycle, was not inhibited by 2-oxoglutarate. Both NAD- and NADP-linked isocitrate dehydrogenase activity was detectable but the functional roles of these enzymes are unclear. No significant differences in enzyme activities or inhibitor sensitivities of enzymes were detected between heterogeneous cultures and synchronous swarmer cell populations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-132-4-931
1986-04-01
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/132/4/mic-132-4-931.html?itemId=/content/journal/micro/10.1099/00221287-132-4-931&mimeType=html&fmt=ahah

References

  1. Amarasingham C. R., Davis B. D. 1965; Regulation of a-ketoglutarate dehydrogenase formation in Escherichia coli. Journal of Biological Chemistry 240:3664–3668
    [Google Scholar]
  2. Beatty J. T., Gest H. 1981a; Generation of succinyl-coenzyme A in photosynthetic bacteria. Archives of Microbiology 129:335–340
    [Google Scholar]
  3. Beatty J. T., Gest H. 1981b; Biosynthetic and bioenergetic functions of citric acid cycle reactions in Rhodopseudomonas capsulata. Journal of Bacteriology 148:584–593
    [Google Scholar]
  4. Cha S. 1969; Succinate thiokinase from pig heart. Methods in Enzymology 13:62–69
    [Google Scholar]
  5. Colby J., Zatman L. J. 1975; Tricarboxylic acid cycle and related enzymes in restricted facultative methylotrophs. Biochemical Journal 148:505–511
    [Google Scholar]
  6. Cox J. C., Beatty J. T., Favinger J. L. 1983; Increased activity of respiratory enzymes from photosynthetically grown Rhodopseudomonas capsulata in response to small amounts of oxygen.. Archives of Microbiology 134:324–328
    [Google Scholar]
  7. Dow C. S., France A. D. 1980; Simplified vegetative cell cycle of Rhodomicrobium vannielii.. Journal of General Microbiology 117:47–55
    [Google Scholar]
  8. Dow C. S., WHITTENBURY R., CARR N. G. 1983; The ‘shut down’ or ‘growth precursor’ cell - an adaptation for survival in a potentially hostile environment.. In Microbes in Their Natural Environments pp 187–247 Editor Slater J. H., Whittenbury R., Wimpenny J. W. T. Cambridge: Cambridge University Press.;
    [Google Scholar]
  9. DUCHOW E., DOUGLAS H. C. 1949; Rhodomicrobium vannielii, a new photoheterotrophic bacterium. Journal of Bacteriology 58:407–416
    [Google Scholar]
  10. Eley J. H, Knobloch K., Han T. W. 1979; Effect of growth condition on enzymes of the citric acid cycle and the glyoxylate cycle in the photosynthetic bacterium Rhodopseudomonas palustris. Antonie van Leeuwenhoek 45:521–529
    [Google Scholar]
  11. FLECHTNER V. R., HANSON R. S. 1970; Regulation of the tricarboxylic acid cycle in bacteria. A comparison of citrate synthases from different bacteria.. Biochimica et biophysica acta 222:253–264
    [Google Scholar]
  12. Gottschalk G., Dittbrenner S. 1970; Properties of (R)-citrate synthase from Clostridium acidi-urici.. Hoppe-Seyler’s Zeitschrift fur physiologische Chemie 351:1183–1190
    [Google Scholar]
  13. Greenfield S., Claus G. W. 1969; Isocitrate dehydrogenase and glutamate synthesis in Acetobac- ter suboxydans.. Journal of Bacteriology 100:1264–1270
    [Google Scholar]
  14. Herbert D., PHIPPS P. J., Strange R. E. 1971; Chemical analysis of microbial cells.. Methods in Microbiology 5B:209–344
    [Google Scholar]
  15. HOARE D. S., HOARE S. L., MOORE R. B. 1967; The photoassimilation of organic compounds by autotrophic blue-green algae.. Journal of General Microbiology 49:351–370
    [Google Scholar]
  16. KELLY D. J., Dow C. S. 1984; Microbial differentiation: the role of cellular asymmetry.. Microbiological Sciences 1:214–219
    [Google Scholar]
  17. KING T. E. 1963; Reconstitution of respiratory chain enzyme systems. XI. Use of artificial electron acceptors in the assay of succinate dehydrogenating enzymes. Journal of Biological Chemistry 238:4032–4036
    [Google Scholar]
  18. LARK K. G., REPKO T., HOFFMAN E. J. 1963; The effect of amino-acid deprivation on subsequent deoxyribonucleic acid replication.. Biochimica et biophysica acta 76:9–24
    [Google Scholar]
  19. MATIN A., RITTENBERG S. C. 1971; Enzymes of carbohydrate metabolism in Thiobacillus species.. Journal of Bacteriology 107:179–186
    [Google Scholar]
  20. MORGAN P., Dow C. S. 1986; Environmental control of cell type expression in prosthecate bacteria.. In Bacteria in Their Natural Environments pp 131–169 Editor Fletcher M., Floodgate G. D. London: Academic Press.;
    [Google Scholar]
  21. MOUSTAFA E., LEONG C. K. 1975; Effect of adenine nucleotides on NAD-dependent isocitrate dehydrogenases in rhizobia and bacteroids of legume root nodules. Biochimica et biophysica acta 391:9–14
    [Google Scholar]
  22. PEARCE J., LEACH C. K., CARR N. G. 1969; The incomplete tricarboxylic acid cycle in the blue-green alga Anabaena variabilis.. Journal of General Microbiology 55:371–378
    [Google Scholar]
  23. POTTS L. E., Dow C. S. 1979; Nucleic acid synthesis during the developmental cycle of the Rhodomicrobium vannielii swarm cell.. EE MS Microbiology Letters 6:393–395
    [Google Scholar]
  24. RAGLAND T. E., KAWASAKI T., LOWENSTEIN J. M. 1966; Comparative aspects of some bacterial dehydrogenases and transhydrogenases.. Journal of Bacteriology 91:236–244
    [Google Scholar]
  25. REEVES H. C., RABIN R., WEGENER W. S., AJL S. J. 1971; Assay of enzymes of the tricarboxylic acid and glyoxylate cycles.. Methods in Microbiology 6A:425–462
    [Google Scholar]
  26. SMITH A. J., HOARE D. S. 1977; Specialist phototrophs, lithotrophs and methylotrophs: a unity among a diversity of procaryotes. Bacteriological Reviews 41:419–448
    [Google Scholar]
  27. SMITH A. J., LONDON J., STANIER R. Y. 1967; Biochemical basis of obligate autotrophy in blue- green algae and thiobacilli. Journal of Bacteriology 94:972–983
    [Google Scholar]
  28. SUISSA M. 1983; Spectrophotometric quantitation of silver grains eluted from autoradiograms. Analytical Biochemistry 133:511–514
    [Google Scholar]
  29. TABITA R., LUNDGREN D. G. 1971; Heterotrophic metabolism of the chemolithotroph Thiobacillus ferrooxidans. Journal of Bacteriology 108:334–342
    [Google Scholar]
  30. TANAKA N., HANSON R. S. 1975; Regulation of the tricarboxylic acid cycle in Gram-positive facultatively anaerobic bacilli.. Journal of Bacteriology 122:215–223
    [Google Scholar]
  31. TAYLOR B. F. 1970; Regulation of citrate synthase activity in strict and facultatively autotrophic thio- bacilli.. Biochemical and Biophysical Research Communications 40:957–963
    [Google Scholar]
  32. WEITZMAN P. D. J. 1982; Unity and diversity in some bacterial citric acid cycle enzymes.. Advances in Microbial Physiology 22:185–244
    [Google Scholar]
  33. WEITZMAN P. D. J., DUNMORE P. 1969; Regulation of citrate synthase by a-ketoglutarate. Metabolic and taxonomic significance. FEBS Letters 3:265–267
    [Google Scholar]
  34. WEITZMAN P. D. J., JONES D. 1968; Regulation of citrate synthase and microbial taxonomy. Nature, London 219:270–272
    [Google Scholar]
  35. WHITTENBURY R., Dow C. S. 1977; Morphogenesis and differentiation in Rhodomicrobium van- nielii and other budding and prosthecate bacteria. Bacteriological Reviews 41:754–808
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-132-4-931
Loading
/content/journal/micro/10.1099/00221287-132-4-931
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error