1887

Abstract

-Aminobenzoic acid synthase (PABA synthase) of catalyses the conversion of chorismic acid to -aminobenzoic acid (PABA), a precursor of the aromatic -aminoacetophenone moiety of candicidin, a polyene macrolide antibiotic. This enzyme uses glutamine or ammonia as amino donors for PABA formation. Enzyme extracts converted [C]chorismic acid to labelled PABA. PABA synthase was present in IMRU 3570 only during the antibiotic producing phase. No detectable levels of the enzyme were found in cell-free extracts of nonproducing mutants of obtained after UV mutagenesis. PABA synthase activity was found also in var. , producer of the polyene macrolide antibiotic fungimycin, but it was not present in extracts of several other streptomycetes that do not produce aromatic polyene macrolide antibiotics. PABA synthase (amidotransferase) activity was partially purified by DEAE-Bio-gel and Sephacryl S-200 filtrations. The estimated molecular weight was 50000. PABA synthase was repressed by aromatic amino acids and PABA but not by anthranilic acid. Inorganic phosphate strongly repressed but did not inhibit PABA synthase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-131-6-1279
1985-06-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/131/6/mic-131-6-1279.html?itemId=/content/journal/micro/10.1099/00221287-131-6-1279&mimeType=html&fmt=ahah

References

  1. Altendorf K. H., Gilch B., Lingens F. 1971; Biosynthesis of p-aminobenzoic acid in Aerobacter aerogenes . FEBS Letters 16:95–98
    [Google Scholar]
  2. Buchanam J. M. 1973; The amidotransferases. Advances in Enzymology 39:91–183
    [Google Scholar]
  3. Francis H. H., Vining L. C., Westlake D. W. S. 1978; Characterization and regulation of anthranilate synthetase from a chloramphenicol-producing streptomycete. Journal of Bacteriology 134:10–16
    [Google Scholar]
  4. Gibson F. 1970; Preparation of chorismic acid. Methods in Enzymology 17A:362–364
    [Google Scholar]
  5. Gibson F., Gibson M., Cox G. B. 1964; The biosynthesis of p-aminobenzoic acid from chorismic acid. Biochimica et biophysica acta 82:637–638
    [Google Scholar]
  6. Gil J. A., Hopwood D. A. 1983; Cloning and expression of a p-aminobenzoic acid synthetase gene of the candicidin producer Streptomyces griseus . Gene 25:119–132
    [Google Scholar]
  7. Gil J. A., Liras P., Naharro G., Villanueva J. R., Martín J. F. 1980; Regulation by aromatic amino acids of the biosynthesis of candicidin by Streptomyces griseus . Journal of General Microbiology 118:189–195
    [Google Scholar]
  8. Hopwood D. A. 1969; Genetic analysis and genome structure in Streptomyces coelicolor . Bacteriological Reviews 31:373–403
    [Google Scholar]
  9. Huang M., Gibson F. 1970; Biosynthesis of p-aminobenzoate in Escherichia coli . Journal of Bacteriology 102:767–773
    [Google Scholar]
  10. Jones A., Westlake D. W. S. 1974; Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic synthesis. Canadian Journal of Microbiology 20:1599–1611
    [Google Scholar]
  11. Kane J. F., O’Brien H. D. 1975; p-aminobenzoate synthase from Bacillus subtilis : amidotransferase composed of nonidentical subunits. Journal of Bacteriology 123:1131–1138
    [Google Scholar]
  12. Kaplan J. B., Nichols B. P. 1983; Nucleotide sequence of Escherichia coli pab A and its evolutionary relationship to trp (G)D. Journal of Molecular Biology 168:451–468
    [Google Scholar]
  13. Liras P., Villanueva J. R., Martín J. F. 1977; Sequential expression of macromolecule biosynthesis and candicidin formation in Streptomyces griseus . Journal of General Microbiology 102:269–277
    [Google Scholar]
  14. Liu C. M., McDaniel L. E., Schaffner C. P. 1972; Studies on candicidin biosynthesis. Journal of Antibiotics 25:116–121
    [Google Scholar]
  15. Martín J. F. 1977; Biosynthesis of polyene macro-lide antibiotics. Annual Review of Microbiology 31:13–38
    [Google Scholar]
  16. Martín J. F., Demain A. L. 1976; Control by phosphate of candicidin production. Biochemical and Biophysical Research Communications 71:1103–1109
    [Google Scholar]
  17. Martín J. F., Demain A. L. 1980; Control of antibiotic biosynthesis. Microbiological Reviews 44:230–251
    [Google Scholar]
  18. Martín J. F., Gil J. A. 1984; Cloning and expression of antibiotic production genes. Bio/Technology 2:63–72
    [Google Scholar]
  19. Martín J. F., Liras P. 1976; Rapid incorporation of precursors into candicidin by resting cells of Streptomyces griseus . Journal of Antibiotics 29:1306–1309
    [Google Scholar]
  20. Martín J. F., McDaniel L. E. 1975a; Tropho-phase-idiophase transition in polyene macrolide antibiotics fermentations: cell maturation time. Biotechnology and Bioengineering 17:208–214
    [Google Scholar]
  21. Martín J. F., McDaniel L. E. 1975b; Specific inhibition of candicidin biosynthesis by the lipo-genic inhibitor cerulenin. Biochimica et biophysica acta 411:186–194
    [Google Scholar]
  22. Zielinski J., Borowy-Borowsky H., Golik J., Gumieniak J., Ziminsky T., Kolodzy-Ejczyk P., Pawlak J., Borowski E. 1979; The structure of levorin A2 and candicidin D. Tetrahedron Letters 20:1791–1794
    [Google Scholar]
  23. Zishka M. K., Nishimura J. S. 1970; Effect of glycerol on Lowry and Biuret methods of protein determination. Analytical Biochemistry 34:291–297
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-131-6-1279
Loading
/content/journal/micro/10.1099/00221287-131-6-1279
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error