1887

Abstract

Summary: Whole cells of the fungus can oxidize acetate, -aconitate, citrate, fumarate, glucose, malate, -ketoglutarate, pyruvate, and succinate under appropriate conditions. The rates of oxidation of acetate and succinate, in particular, are very high and exceed the rate of glucose oxidation. Diethylmalonate in high concentration inhibits the oxidation of glucose and acetate, but succinate oxidation is not greatly inhibited by malonic acid, even when the malonate concentration is twice the succinate concentration.

By freezing the cells in liquid nitrogen it is possible to investigate many of the individual reactions of the tricarboxylic acid cycle. Among the more important reactions shown were: -aconitate to citrate; citrate or -aconitate to -ketoglutarate; -ketoglutarate to succinate; succinate to fumarate plus malate; malate to oxalacetate plus pyruvate; and malate or pyruvate to citrate. Acetate was not metabolized. Succinate oxidation was competitively inhibited by malonate. The significance of these results with regard to the operation of the citric acid cycle in this organism is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-13-2-235
1955-10-01
2021-07-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/13/2/mic-13-2-235.html?itemId=/content/journal/micro/10.1099/00221287-13-2-235&mimeType=html&fmt=ahah

References

  1. Ajl S.J. 1951; Terminal respiratory mechanisms in microorganisms. Bad. Rev. 15:211
    [Google Scholar]
  2. Beevers H., Goldschmidt E.P., Koffler H. 1952; Use of esters of biologically active weak acids in overcoming permeability difficulties. Arch. Biochem. Biophys. 39:236
    [Google Scholar]
  3. Brummond D.O., Burris R.H. 1953; Transfer of 14C by lupine mitochondria through reactions of the tricarboxylic acid cycle. Proc. nat. Acad. Sci., Wash. 39754
    [Google Scholar]
  4. Bryant F., Overell B.T. 1953; Quantitative chromatographic analysis of organic acids in plant tissue extracts. Biochim. biophys.acta 10:471
    [Google Scholar]
  5. Cantino E.C., Hyatt M.T. 1953; Further evidence for the rôle of the tricarboxylic acid cycle in morphogenesis of Blastocladiella emersonii. . J. Bact. 66:712
    [Google Scholar]
  6. Carson S.F., Foster J.W., Jefferson W.E., Phares E.F., Anthony D.S. 1951; Oxidative formation of lactic acid by a fungus. Arch. Biochem. 33:448
    [Google Scholar]
  7. Casida L.E. Jun. Knight S.G. 1954; The oxidation of tricarboxylic acid cycle compounds by Penicillium chrysogenum. . J. Bact. 67:658
    [Google Scholar]
  8. Chughtai M.I.D., Pearce A.A., Walker T.K. 1950; The mechanism of the formation of organic acids by mould fungi. 4. The formation of acetic and pyruvic acids in Aspergillus niger growing in glucose media. Biochem. J. 47:135
    [Google Scholar]
  9. Cochrane V.W., Peck H.D. Jun. 1953; The metabolism of species of Strepto-myces. VI. Tricarboxylic acid cycle reactions in Streptomyces coelicolor. . J. Bact. 65:37
    [Google Scholar]
  10. Danforth W. 1953; Oxidative metabolism of Euglena. . Arch. Biochem. Biophys. 46:164
    [Google Scholar]
  11. Davies D.D. 1953; The Krebs cycle enzyme system of pea seedlings. J. exp. Bot. 4:173
    [Google Scholar]
  12. Deffner M. 1942; Über der Stoffwechsel des Schimmelpilzes Aspergillus niger. I. Abbau der Citronensaure. Liebigs Ann. 552:191
    [Google Scholar]
  13. Dent C.E. 1948; A study of the behaviour of some sixty amino acids and other ninhydrin-reacting substances on phenol-‘collidine’ filter-paper chromatograms, with notes as to the occurrence of some of them in biological fluids. Biochem. .J. 43:169
    [Google Scholar]
  14. Eisenberg M.A. 1953; The tricarboxylic acid cycle in Bhodospirillum rubrurn. . J. biol. Chem. 203:815
    [Google Scholar]
  15. El Hawary M.F.S., Thompson R.H.S. 1953; Separation and estimation of blood keto acids by paper chromatography. Biochem. J. 53:340
    [Google Scholar]
  16. Fincham J.R.S. 1953; Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochem. J. 53:313
    [Google Scholar]
  17. Foulkes E.C. 1951; The occurrence of the tricarboxylic acid cycle in yeast. Biochem. J. 48:378
    [Google Scholar]
  18. French C.S., Milner H.W. 1951; The photochemical reduction process in photosynthesis. Symp. Soc. exp. Biol. 5:232
    [Google Scholar]
  19. Garner H.R., Koffler H. 1951; Preliminary evidence against the existence of a Krebs cycle in Streptomyces griseus. . Bact. Proc. 149:
    [Google Scholar]
  20. Gray C.T. 1952a; Principles involved in the malonate inhibition of succinate oxidation by bacteria. Bact. Proc. 149:
    [Google Scholar]
  21. Gray C.T. 1952b; The malonic decarboxylase of Pseudomonas aeruginosa. . J. Bact. 63:813
    [Google Scholar]
  22. Halliwell G., Walker T.K. 1952; The metabolism of glucose and acetate in Aspergillus niger. . J. exp. Bot. 3:155
    [Google Scholar]
  23. Hockenhull D.J.D., Herbert M., Walker A.D., Wilkin G.D., Winder F.G. 1954; Organic acid metabolism of Penicillium chrysogenum. 1. Lactate and acetate. Biochem. J. 56:73
    [Google Scholar]
  24. Holland J., Humphrey G.F. 1953; Metabolism of Paramecium caudatum. I. Respiration. Aust. J. exp. Biol. med. Set. 31:291
    [Google Scholar]
  25. Hughes D.E. 1951; A press for disrupting bacteria and other microorganisms. Brit. J. exp. Path. 32:97
    [Google Scholar]
  26. Kaufman S., Gilvarg C., Cori O., Ochoa S. 1953; Enzymatic oxidation of α-ketoglutarate and coupled phosphorylation. J. biol. Chem. 203:869
    [Google Scholar]
  27. Korkes S., Del Campillo A., Gunsalus I.C., Ochoa S. 1951; Enzyme synthesis of citric acid. IY. Pyruvate as acetyl donor. J. biol. Chem. 193:721
    [Google Scholar]
  28. Korkes S., Del Campillo A., Ochoa S. 1952; Pyruvate oxidation system of heart muscle. J. biol. Chem. 195:541
    [Google Scholar]
  29. Krebs H.A. 1943; The intermediary stages in the biological oxidation of carbohydrate. Advanc. Enzymol. 3:191
    [Google Scholar]
  30. Krebs H.A., Eggleston L.V. 1943; The effect of citrate on the rotation of the molybdate complexes of malate, citramalate, and isocitrate. Biochem. J. 37:334
    [Google Scholar]
  31. Krebs H.A., Gurin S., Eggleston L.V. 1952; The pathway of oxidation of acetate in baker’s yeast. Biochem. J. 51:614
    [Google Scholar]
  32. Littlefield J.W., Sanadi D.R. 1952; Rôle of coenzyme A and diphospho-pyridine nucleotide in the oxidation of pyruvate. J. biol. Chem. 199:65
    [Google Scholar]
  33. Lynen F., Neciullah N. 1939; Zum Abbau von Bernsteinsaure, Äpfelsäure und Citronensäure durch Hefe. Liebigs Ann. 541:203
    [Google Scholar]
  34. Mickelson M.N., Schuler M.N. 1953; Oxidation of acetate by Ashby a gossypii. . J. Bact. 65:297
    [Google Scholar]
  35. Milner H.W., Lawrence N.S., French C.S. 1950; Colloidal dispersion of chloroplast material. Science 111:633
    [Google Scholar]
  36. Moses V. 1954; The effect of ammonia on the oxidation of glucose by Zygorrhynchus moelleri. . Biochem. J. 57:547
    [Google Scholar]
  37. Moses V. 1955a; Glucose respiration in Zygorrhynchus moeller i; the entry of glucose into the cells. J. exp. Bot. 6:222
    [Google Scholar]
  38. Moses V. 1955b; The disappearance of intermediates involved in glucose oxidation during the starvation of the fungus Zygorrhynchus moelleri. . Ann. Bot., Lond. N.S. 19:211
    [Google Scholar]
  39. Natelson S., Pincus J.B., Lugovoy J.K. 1948; Microestimation of citric acid; a new colorimetric reaction for pentabromacetone. J. biol. Chem. 175:745
    [Google Scholar]
  40. Nossal P.M. 1954; Oxidative reactions in cell-free yeast extracts. Biochim. biophys. acta 14:154
    [Google Scholar]
  41. Ostern P. 1933; Methode zur Bestimmung von Oxalessigsäure. Hoppe-Seyl. Z. 218:160
    [Google Scholar]
  42. Potter V.R. 1948; Homogenate technique. Meth. med. Res. 1:317
    [Google Scholar]
  43. Price C.A. 1953; Malonate inhibition of α-ketoglutaric oxidase. Arch. Biochem. Biophys. 47:314
    [Google Scholar]
  44. Repaske R., Wilson P.W. 1953; Oxidation of the intermediates of the tricarboxylic acid cycle by extracts of Azotobacter agile. . Proc. nat. Acad. Sci. Wash. 39225
    [Google Scholar]
  45. Sanadi D.R., Littlefield J.W. 1952; Rôle of coenzyme A and DPN in the oxidation of α-ketoglutaric acid. Science 116:327
    [Google Scholar]
  46. Sanadi D.R., Littlefield J.W., Bock R.M. 1952; Studies on α-ketoglutaric oxidase. II. Purification and properties. J. biol. Chem. 197:851
    [Google Scholar]
  47. Shu P., Funk A., Neish A.C. 1954; Mechanism of citric acid formation from glucose by Aspergillus niger. Canad. . J. Biochem. Physiol. 32:68
    [Google Scholar]
  48. De Stevens G., Debaun R.M., Nord F.F. 1951; On the mechanism of enzyme action. XLV. The role of certain dicarboxylic acids in the formation of oxalic acid by wood-destroying moulds. Arch. Biochem. 33:304
    [Google Scholar]
  49. Towers G.H.N., Thompson J.F., Steward F.C. 1954; The detection of the keto acids of plants. A procedure based on their conversion to amino acids. J. Amer. chem. Soc. 76:2392
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-13-2-235
Loading
/content/journal/micro/10.1099/00221287-13-2-235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error