1887

Abstract

A strain of that had been isolated from a freshwater source on a plastic substratum was grown in continuous culture in minimal medium. The ‘adsubble’ process (adsorptive bubble separation process) was found to foam-fractionate wild-type cells from the fermenter during flow conditions. This selection pressure favoured the enrichment of two major classes of mutant, both having cell surface characteristics fundamentally different from the wild-type. The wild-type produced very little extracellular polysaccharide, whereas a ‘mucoid’ mutant, found predominantly in the aqueous-phase, produced an alginate exopolymer. The second class of mutant was isolated from the walls of the fermenter and, like the wild-type, produced little exopolymer. This mutant, with crenated colony morphology, showed increased attachment to solid surfaces compared to the wild-type and mucoid cells when assayed for attachment to polystyrene surfaces for 2 h. Outer-membrane protein, lipopolysaccharides and exopolysaccharides of the wild-type and both mutants were analysed. The results demonstrate the role of cell surface characteristics in the adaptability of the organism to micro-environments such as a solid/liquid or air/liquid interface or the aqueous phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-129-8-2557
1983-08-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/129/8/mic-129-8-2557.html?itemId=/content/journal/micro/10.1099/00221287-129-8-2557&mimeType=html&fmt=ahah

References

  1. Ames G. F. L. 1974; Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Journal of Biological Chemistry 249:634–644
    [Google Scholar]
  2. Bitter T., Muir H. M. 1962; A modified uronic acid carbazole reaction. Analytical Biochemistry 4:330–334
    [Google Scholar]
  3. Block R. J., Durrum E. L., Zweig G. 1958 A Manual of Paper Chromatography and Paper Electro-phoresis. New York: Academic Press;
    [Google Scholar]
  4. Boyles W. A., Lincoln R. E. 1958; Separation and concentration of bacterial spores and vegetative cells by foam flotation. Applied Microbiology 6:327–334
    [Google Scholar]
  5. Brown C. M., Ellwood D. C., Hunter J. R. 1977; Growth of bacteria at surfaces: influence of nutrient limitation. FEMS Microbiology Letters 1:163–166
    [Google Scholar]
  6. Corpe W. A. 1970; An acid polysaccharide produced by a primary film-forming bacterium. Developments in Industrial Microbiology 2:402–412
    [Google Scholar]
  7. Corpe W. A. 1974; Periphytic marine bacteria in the formation of microbial film on solid surfaces. In Effects of the Ocean Environments on Microbial Activities pp. 397–417 Colwell R., Morita R. Edited by Baltimore: University Park Press;
    [Google Scholar]
  8. Corpe W. A. 1979; Microbial surface components involved in adsorption of microorganisms onto surfaces. In Adsorption of Microorganisms to Surfaces pp. 106–139 Bitton G., Marshall K. C. Edited by New York: Wiley;
    [Google Scholar]
  9. Costerton J. W., Geesey G. G., Cheng K. J. 1978; How bacteria stick. Scientific American 238:86–95
    [Google Scholar]
  10. Dahlbäck B., Hermansson M., Kjelleberg S., Norkrans B. 1981; The hydrophobicity of bacteria - an important factor in their adhesion at the air-water interface. Archives of Microbiology 128:267–270
    [Google Scholar]
  11. Dazzo F. B. 1980; Microbial adhesion to plant surfaces. In Microbial Adhesion to Surfaces pp. 311–328 Berkeley R. C. W., Lynch J. M., Melling J., Rutter P. R., Vincent B. Edited by Chichester: Ellis Horwood;
    [Google Scholar]
  12. Dognon A. 1941; Concentrating and separating molecules and particles by means of froth formation. Reviews of Science (France): 79613–619
    [Google Scholar]
  13. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for the determination of sugars and related substances. Analytical Chemistry 28:350–356
    [Google Scholar]
  14. Evans L. R., Linker A. 1973; Production and characterisation of the slime polysaccharide of Pseudomonas aeruginosa. Journal of Bacteriology 116:915–924
    [Google Scholar]
  15. Fairbanks G., Steck T. L., Wallach D. F. H. 1971; Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617
    [Google Scholar]
  16. Fazio S. A., Uhlinger D. J., Parker J. H., White D. C. 1982; Estimation of uronic acids as quantitative measures of extracellular and cell wall polysaccharide polymers from environmental samples. Applied and Environmental Microbiology 43:1151–1159
    [Google Scholar]
  17. Fletcher M. 1977; The effects of culture concentration and age, time and temperature on bacterial attachment to polystyrene. Canadian Journal of Microbiology 23:1–6
    [Google Scholar]
  18. Fletcher M., Floodgate G. D. 1973; An electron-microscopic demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces. Journal of General Microbiology 74:325–334
    [Google Scholar]
  19. Gibbons R. J., Vanhoute J. 1980; Bacterial adherence and the formation of dental plaques. In Bacterial Adherence (Receptors and Recognition, series B 6 pp. 61–104 Beachey E. H. Edited by London & New York: Chapman & Hall;
    [Google Scholar]
  20. Grieves R. B., Wang S. 1966; Foam separation of Escherichia coli with a cationic surfactant. Biotechnology and Bioengineering 8:323–336
    [Google Scholar]
  21. Haynes W. C., Rhodes L. J. 1962; Comparative taxonomy of crystallo-genic strains of Pseudomonas aeruginosa and Pseudomonas chlororaphis. Journal of Bacteriology 84:1080–1084
    [Google Scholar]
  22. Hendrie M. S., Shewan J. M. 1979; The identification of pseudomonads. In Indentification Methods for Microbiologists pp. 1–12 Skinner F. A., Lovelock D. W. Edited by London: Academic Press;
    [Google Scholar]
  23. Hollo J., Toth J., Tengerdy R. P., Johnson J. E. 1977; . Denitrification and removal of heavy metals from waste water by immobilised microorganisms. In Immobilized Microbial Cells Symposium Series 106 pp. 73–84 Ventkata-subramanian K. Edited by Washington, D. C.: American Chemical Society;
    [Google Scholar]
  24. Karger B. L. 1967; Nomenclature recommendations for adsorptive bubble separation methods. Separation Science 2:401–404
    [Google Scholar]
  25. King A., Phillips I. 1978; The identification of pseudomonads and related bacteria in a clinical laboratory. Journal of Medical Microbiology 11:165–176
    [Google Scholar]
  26. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyo- cyanin and fluorescin. Journal of Laboratory and Clinical Medicine 44:301–307
    [Google Scholar]
  27. Kjelleberg S., Lagercrantz C., Larsson T. H. 1978; Quantitative analysis of bacterial hydrophobicity studied by the binding of dodecanoic acid. FEMS Microbiology Letters 7:41–44
    [Google Scholar]
  28. Kovács N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature; London: 178703
    [Google Scholar]
  29. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  30. Lemlich R. 1966; Adsubble methods. Chemical Engineering 73:7–12
    [Google Scholar]
  31. Lemlich R. 1972; Adsubble processes: foam fractionation and bubble fractionation. Journal of Geophysical Research 77:5204–5210
    [Google Scholar]
  32. Linton J. D., Cripps R. E. 1978; The occurrence and identification of intracellular polyglucose storage granules in Methylococcus NCIB 11083 grown in chemostat culture on methane. Archives of Micro-biology 117:41–48
    [Google Scholar]
  33. Lippincott J. A., Lippincott B. B. 1980; Microbial adherence in plants. In Bacterial Adherence (Receptors and Recognition, series B 6 pp. 375–398 Beachey E. H. Edited by London: Chapman & Hall;
    [Google Scholar]
  34. Lüderitz O., Westphal O., Staub A. M., Nakaido H. 1971; Isolation and chemical and immunological characterisation of bacterial lipopolysaccharides. In Microbial Toxins IV pp. 145–233 Weinbaum G., Kadis S., Ajl S. J. Edited by New York & London: Academic Press;
    [Google Scholar]
  35. Magnusson K. E., Stendahl O., Tagesson C., Edebo L., Johansson G. 1977; The tendency of smooth and rough Salmonella typhimurium bacteria and lipopolysaccharide to hydrophobic and ionic interaction as studied in aqueous polymer two-phase systems. Acta pathologica et microbiologica scandinavica section B 85:212–218
    [Google Scholar]
  36. Marshall K. C. 1976 Interfaces in Microbial Ecology. Cambridge, Mass.: Harvard University Press;
    [Google Scholar]
  37. Meadows P. S., Anderson J. G. 1979; The microbiology of interfaces in the marine environment. In Progress in Industrial Microbiology 15 pp. 207–265 Bull M. J. Edited by London: Elsevier;
    [Google Scholar]
  38. Mukerjee H. 1964; A new solvent system for paper chromatographic separation of glucuronic acid and galacturonic acid. Journal of Chromatography 14:551–552
    [Google Scholar]
  39. Nikaido H., Nakae T. 1980; The outer membrane of Gram-negative bacteria. In Microbial Cell Walls and Membranes pp. 163–250 Rogers H. J., Perkins H. R., Ward J. B. >Edited by London: Chapman & Hall;
    [Google Scholar]
  40. Norval M., Sutherland I. W. 1969; A group of Klebsiella mutants showing temperature-dependent polysaccharide synthesis. Journal of General Microbiology 57:369–377
    [Google Scholar]
  41. Palleroni N. J., Doudoroff M. 1972; Some properties and taxonomic subdivisions of the genus Pseudomonas. Annual Review of Phytopathology 10:73–100
    [Google Scholar]
  42. Pethica B. A. 1961; The physical chemistry of cell adhesion. Experimental Cell Research supplement 8:123–140
    [Google Scholar]
  43. Pringle J. H., Fletcher M. 1982; Influence of substratum wettability on the attachment of freshwater bacteria to solid surfaces. Applied and Environmental Microbiology 45:811–817
    [Google Scholar]
  44. Rogers H. J. 1980; Adhesion of microorganisms to surfaces: some general considerations of the role of the envelope. In Adhesion of Microorganisms to Surfaces pp. 29–55 Ellwood D. C., Melling J., Rutter P. Edited by London: Academic Press;
    [Google Scholar]
  45. Romanowska E. 1970; Sepharose gel filtration method of purification of lipopolysaccharides. Analytical Biochemistry 33:383–389
    [Google Scholar]
  46. Schnaitman C. A. 1970; Protein composition of the cell wall and cytoplasmic membrane of Escherichia coli. Journal of Bacteriology 104:890–901
    [Google Scholar]
  47. Seymour F. R., Chen E. C. M., Bishop S. H. 1979; Identification of aldoses by use of their peracetylatedaldononitrile derivatives: a GLC-MS approach. Carbohydrate Research 73:19–45
    [Google Scholar]
  48. Sjostrom E., Pfister K., Seppala E. 1974; Quantitative determination of aldonic and uronic acids by gas chromatography-mass spectrometry. Carbohydrate Research 38:293–299
    [Google Scholar]
  49. Sloneker J. H. 1972; Gas-liquid chromatography of alditol acetates. Methods in Carbohydrate Chemistry 6: 20–24
    [Google Scholar]
  50. Smith E. J. 1967; Purification and properties of acidic polysaccharides isolated from Achromobacter georgiopolitanum. Journal of Biological Chemistry 243:5139–5144
    [Google Scholar]
  51. Stotzky G. 1980; Surface interactions between clay minerals and microbes, viruses and soluble organics, and the probable importance of these interactions to the ecology of microbes in soil. In Microbial Adhesion to Surfaces pp. 231–262 Berkeley R. C. W., Lynch J. M., Melling J., Rutter P. R., Vincent B. Edited by Chichester: Ellis Horwood;
    [Google Scholar]
  52. Sutherland I. W. 1980; Polysaccharides in the adhesion of marine and freshwater bacteria. In Microbial Adhesion to Surfaces pp. 329–338 Berkeley R. C. W., Lynch J. M., Melling J., Rutter P. R., Vincent B. Edited by Chichester: Ellis Horwood;
    [Google Scholar]
  53. Varma R., Varma R. S. 1976; Simultaneous determination of neutral sugars and hexosamines in glycoproteins and acid mucopolysaccharides (glycosaminoglycans) by gas-liquid chromatography. Journal of Chromatography 128:45–52
    [Google Scholar]
  54. Venkatasubramanian K., Vieth W. R. 1979; Immobilized microbial cells. In Progress in Industrial Microbiology 15 pp. 61–86 Bull M. J. Edited by London: Elsevier;
    [Google Scholar]
  55. Walker P. D., Nagy L. K. 1980; Adhesion of organisms to animal tissues. In Microbial Adhesion to Surfaces pp. 473–494 Berkeley R. C. W., Lynch J. M., Melling J., Rutter P. R., Vincent B. Edited by Chichester: Ellis Horwood;
    [Google Scholar]
  56. Wardell J. N., Brown C. M., Ellwood D. C. 1980; A continuous culture study of the attachment of bacteria to surfaces. In Microbial Adhesion to Surfaces pp. 221–230 Berkeley R. C. W., Lynch J. M., Melling J., Rutter P. R., Vincent B. Edited by Chichester: Ellis Horwood;
    [Google Scholar]
  57. Weissman B., Meyer K. 1954; Structure of hyaloburonic acid and hyaluronic acid. Journal of the American Chemical Society 76:1753–1757
    [Google Scholar]
  58. Westphal O., LÜderitz O. 1954; ChemischeErforschung von Lipopolysacchariden Gram-nega- tiverBakterien. Angewandte Chemie 66:407–417
    [Google Scholar]
  59. Whistler R. L., Conrad H. E. 1954; 2-O-(d-galactopyranosyluronic acid)-l-rhamnose from okra mucilage. Journal of the American Chemical Society 76:3544–3546
    [Google Scholar]
  60. Williams A. G. 1974 Extracellular polysaccharide production by a Gram-negative bacterial isolate. Ph.D thesis University of Wales, U.K.:
    [Google Scholar]
  61. Williams A. G., Wimpenny J. W. T. 1976; Exopolysaccharide production by Pseudomonas PB1 grown in batch and continuous culture.Effect of growth conditions. Journal of Applied Chemistry and Biotechnology 26:326–327
    [Google Scholar]
/content/journal/micro/10.1099/00221287-129-8-2557
Loading
/content/journal/micro/10.1099/00221287-129-8-2557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error